Search

Browse Subject Areas

For Authors

Submit a Proposal

Formation Testing: Supercharge, Pressure Testing and Contamination Models

By Wilson C. Chin
Series: Handbook of Petroleum Engineering Series
Copyright: 2019   |   Status: Published
ISBN: 9781119283775  |  Hardcover  |  
395 pages
Price: $225 USD
Add To Cart

One Line Description
This new volume, the third in Wiley-Scrivener's series on formation testing, reviews pressure transient interpretation and contamination analysis methods, providing numerous practical discussions and examples with rigorous formulations solved through exact, closed form, analytical solutions.

Audience
Petroleum engineers, reservoir engineers, petroleum geologists, well log analysts, consultants, university students and faculty in in petroleum engineering

Description
This third volume in the “Formation Testing” series further develops new methods and processes that are being developed in the oil and gas industry. In the 1990s through 2000s, the author co-developed Halliburton’s commercially successful GeoTapTM real-time LWD/MWD method for formation testing, and also a parallel method used by China Oilfield Services, which enabled the use of data taken at early times, in low mobility and large flowline volume environments, to support the important estimation of mobility, compressibility and pore pressure, which are necessary for flow economics and fluid contact boundaries analyses (this work was later extended through two Department of Energy Small Business Innovation Research awards).

While extremely significant, the effect of high pressures in the borehole could not be fully accounted for – the formation tester measures a combination of reservoir and mud pressure and cannot ascertain how much is attributed to unimportant borehole effects. The usual approach is “simply wait” until the effects dissipate, which may require hours – which imply high drilling and logging costs, plus increased risks in safety and tool loss. The author has now modeled this “supercharge” effect and developed a powerful mathematical algorithm that fully accounts to mud interations. In short, accurate predictions for mobility, compressibility and pore pressure can now be undertaken immediately after an interval is drilled without waiting.

This groundbreaking new work is a must-have for any petroleum, reservoir, or mud engineer working in the industry, solving day-to-day problems that he or she encounters in the field.



Back to Top
Supplementary Data
• Includes new examples and applications showing how mobility, compressibility and pore pressure can be accurately predicted from pressure transient measurements at early times in low mobility and large flowline volume environments
• Explains how important predictions can be made immediately without waiting for high borehole overbalance pressures to dissipate, thus greatly reducing well logging and drilling costs while improving wellsite safety
• Explains “test, inject, re-test” methods for chemical treatment of the reservoir and hydrate properties treatment and monitoring
• Designs, validates, and applies “multiple drawdown-buildup” inverse methods for evolving mobility, compressibility and pore pressure (up to eleven flowrate cycles) to numerous downhole scenarios
• Is a “must have” state-of-the-art reference from the developer of Halliburton’s and China Oilfield Services’ pressure transient interpretation methods, now extended with strong supercharging and borehole overbalance pressure effects


Author / Editor Details
Wilson C. Chin earned his M.Sc. at Caltech and his Ph.D. from M.I.T. An experienced petroleum engineer, he has authored twenty monographs with Wiley-Scrivener and other publishers, over a hundred papers and more than four dozen patents. He is the recipient of five prestigious awards from the United States Department of Energy and is a well-regarded software developer with strong interests in formation testing, reservoir engineering, drilling and cementing rheology, borehole electromagnetics, managed pressure drilling and Measurement-While-Drilling.

Back to Top

Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
1. Formation Testing --Strategies, Capabilities and Solutions . . 1
1.1 Development Perspectives . . . . . . . . . . . . . . . . . . . 1
1.2 Basic Forward and Inverse Models . . . . . . . . . . . . . 4
1.3 Supercharge Forward and Inverse Models . . . . . . . . . 14
1.4 Multiple Drawdown and Buildup Inverse Models . . . . . 20
1.5 Multiphase Cleaning and Supercharge Model . . . . . . . 24
1.6 System Integration and Closing Remarks . . . . . . . . . 29
1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2. Supercharging --Forward Models and Inverse Solutions . . . . 31
2.1 Supercharge and Math Model Development . . . . . . . . 31
2.2 Supercharge Pressure and Ultimate Decay . . . . . . . . . 34
2.3 United States Patent 7,243,537 B2 . . . . . . . . . . . . . . 37
2.4 Forward and Inverse Models with Supercharging --
Drawdown-Only and Drawdown-Buildup Applications
and Illustrative Examples . . . . . . . . . . . . . . . . . . . 69
2.4.1 General Ideas in Formation Testing
Formulations . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Mathematical Formulation . . . . . . . . . . . . . . . 73
2.5 Drawdown Only Applications . . . . . . . . . . . . . . . . . 78
2.5.1 Example DD-1, High Overbalance . . . . . . . . . . 78
2.5.2 Example DD-2, High Overbalance . . . . . . . . . . 84
2.5.3 Example DD-3, High Overbalance . . . . . . . . . . 88
2.5.4 Example DD-4, Qualitative Pressure Trends . . . . 92
2.5.5 Example DD-5, Qualitative Pressure Trends . . . . 95
2.5.6 Example DD-6, Drawdown-Only -- Data with Multiple
Inverse Scenarios for 1 md/cp Application . . . . . 97
2.5.7 Example DD-7, Drawdown-Only -- Data with Multiple
Inverse Scenarios for 0.1 md/cp Application . . . . 102
2.6 Drawdown --Buildup Applications . . . . . . . . . . . . . 107
2.6.1 Example DDBU-1, Drawdown-Buildup, High
Overbalance . . . . . . . . . . . . . . . . . . . . . . . 107
2.6.2 Example DDBU-2, Drawdown-Buildup, High
Overbalance . . . . . . . . . . . . . . . . . . . . . . . 111
2.6.3 Example DDBU-3, Drawdown-Buildup, High
Overbalance . . . . . . . . . . . . . . . . . . . . . . . 114
2.6.4 Example DDBU-4, Drawdown-buildup, 1 md/cp
Calculations . . . . . . . . . . . . . . . . . . . . . . . 118
2.6.5 Example DDBU-5, Drawdown-buildup, 0.1 md/cp
Calculations . . . . . . . . . . . . . . . . . . . . . . . 122
2.7 Supercharged Anisotropic Flow Simulation Model . . . . 127
2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3. Pressure Transient Analysis --Multirate Drawdown and
Buildup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.1 Multirate Drawdown and Buildup Applications . . . . . . 133
3.1.1 Monitoring, Testing, Treatment and Retest . . . . 134
3.1.2 Hydrate Characterization and Production . . . . . 138
3.2 Detailed Validations with Exact Solutions . . . . . . . . . 142
3.2.1 Validation of PTA-App-01 Inverse Model . . . . 144
3.2.2 Validation of PTA-App-02 Inverse Model . . . . 148
3.2.3 Validation of PTA-App-03 Inverse Model . . . . 156
3.2.4 Validation of PTA-App-04 Inverse Model . . . . 163
3.2.5 Validation of PTA-App-05 Inverse Model . . . . 172
3.2.6 Validation of PTA-App-06 Inverse Model . . . . 177
3.2.7 Validation of PTA-App-07 Inverse Model . . . . 182
3.2.8 Validation of PTA-App-08 Inverse Model . . . . 187
3.2.9 Validation of PTA-App-09 Inverse Model . . . . 192
3.2.10 Validation of PTA-App-10 Inverse Model . . . . 197
3.2.11 Validation of PTA-App-11 Inverse Model . . . . 202
3.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4. Practical Applications and Examples . . . . . . . . . . . . . . . 221
4.1 Review Objectives . . . . . . . . . . . . . . . . . . . . . . . 221
4.2 Practical Applications and Examples . . . . . . . . . . . . 222
4.2.1 Isotropic Medium Pressure Testing . . . . . . . . 222
4.2.1.1 Steady-state method . . . . . . . . . . . . 222
4.2.1.2 Drawdown-buildup method . . . . . . . . 226
4.2.1.3 Drawdown only method . . . . . . . . . . 230
4.2.2 Anisotropic Media Pressure Testing
(Using FT-01) . . . . . . . . . . . . . . . . . . . . . 232
4.2.3 Supercharge Effects in Drawdown-Buildup . . . 240
4.2.4 Supercharge Mechanics in Detail --
Reservoir Fluid More Viscous Than Mud . . . . . 250
4.2.5 Supercharge Mechanics in Detail --
Reservoir Fluid Less Viscous Than Mud . . . . . 261
4.2.6 Supercharge Mechanics in Detail --
Reservoir Fluid Viscosity Equals Mud
Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 264
4.2.7 Perfectly Balanced Well, Mechanics in Detail --
Reservoir Fluid Viscosity Equals Mud
Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 266
4.2.8 Underbalance Mechanics in Detail --
Reservoir Fluid Viscosity Equals Mud
Viscosity . . . . . . . . . . . . . . . . . . . . . . . . 268
4.2.9 Comparing Overbalance vs Underbalance
Pressures for Same Reservoir and Tool Pumping
Conditions . . . . . . . . . . . . . . . . . . . . . . . 270
4.2.10 Consequences of Non-Performing Pump Piston . 284
4.2.11 Batch Processing Using FT-00 . . . . . . . . . . . 291
4.2.12 Depth of Investigation Using FT-00 DOI
Function . . . . . . . . . . . . . . . . . . . . . . . . . 296
4.2.13 History Matching Using FT-06 Batch Mode . . . 306
4.2.13.1 Operating FT-06 batch simulator . . . . 308
4.2.13.2 Source code documentation
(color coded) . . . . . . . . . . . . . . . . 313
4.2.13.3 A final example --concise operational
summary . . . . . . . . . . . . . . . . . . 328
4.2.14 Gas Pumping . . . . . . . . . . . . . . . . . . . . . . 334
4.2.14.1 Several field notes . . . . . . . . . . . . 334
4.2.14.2 Review of steady-state direct and inverse
methods . . . . . . . . . . . . . . . . . . . 335
4.2.14.3 Transient gas calculations . . . . . . . . 338
4.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5. Best Practices and Closing Remarks . . . . . . . . . . . . . . . . 343
5.1 Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . 343
5.2 Recommended Reading . . . . . . . . . . . . . . . . . . . . 351
Cumulative References . . . . . . . . . . . . . . . . . . . . . . . . . 352
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

Back to Top


BISAC SUBJECT HEADINGS
TEC047000 : TECHNOLOGY & ENGINEERING / Petroleum
SCI024000 : SCIENCE / Energy
MAT003000 : MATHEMATICS / Applied
 
BIC CODES
THF: Fossil fuel technologies
RBGK: Geochemistry
TQ: ENVIRONMENTAL SCIENCE, ENGINEERING & TECHNOLOGY

Back to Top


Description
BISAC & BIC Codes
Author/Editor Details
Table of Contents
Bookmark this page