This latest volume in the new "Advances in Membrane Processes" series from Wiley-Scrivener contains the most comprehensive and up-to-date coverage of modeling in membranes and membrane-based processes, a "one stop shop" on the subject.
Table of ContentsIntroduction to Modeling and Simulation for the Design
of Membrane Processes 1
Anirban Roy, Aditi Mullick and Siddhartha Moulik
Bibliography 4
2 Thermodynamics of Casting Solution in Membrane Synthesis 7
Shubham Lanjewar, Anupam Mukherjee, Lubna Rehman,
Amira Abdelrasoul and Anirban Roy
2.1 Introduction 8
2.2 Liquid Mixture Theories 9
2.2.1 Theories of Lattices 9
2.2.1.1 The Flory-Huggins Theory 9
2.2.1.2 The Equation of State Theory 10
2.2.1.3 The Gas-Lattice Theory 11
2.2.2 Non-Lattice Theories 11
2.2.2.1 The Strong Interaction Model 11
2.2.2.2 The Heat of Mixing Approach 11
2.2.2.3 The Solubility Parameter Approach 12
2.2.3 The Flory -- Huggins Model 13
2.3 Solubility Parameter and Its Application 16
2.3.1 Scatchard-Hildebrand Theory 16
2.3.1.1 The Regular Solution Model 16
2.3.1.2 Application of Hildebrand Equation
to Regular Solutions 17
2.3.2 Solubility Scales 18
2.3.3 Role of Molecular Interactions 19
2.3.3.1 Types of Intermolecular Forces 19
2.3.4 Intermolecular Forces: Effect on Solubility 21
2.3.5 Interrelation Between Heat of Vaporization
and Solubility Parameter 22
2.3.6 Measuring Units of Solubility Parameter 23
2.4 Dilute Solution Viscometry 24
2.4.1 Types of Viscosities 25
2.4.2 Viscosity Determination and Analysis 26
2.5 Ternary Composition Triangle 30
2.5.1 Typical Ternary Phase Diagram 31
2.5.2 Binodal Line 32
2.5.2.1 Non-Solvent/Solvent Interaction 34
2.5.2.2 Non-Solvent/Polymer Interaction 34
2.5.2.3 Solvent/Polymer Interaction 35
2.5.3 Spinodal Line 35
2.5.4 Critical Point 35
2.5.5 Thermodynamic Boundaries and Phase Diagram 36
2.6 Conclusion 38
2.7 Acknowledgment 38
List of Abbreviations and Symbols 38
Greek Symbols 40
References 40
3 Computational Fluid Dynamics (CFD) Modeling
in Membrane-Based Desalination Technologies 45
Pelin Yazgan-Birgi, Mohamed I. Hassan Ali
and Hassan A. Arafat
3.1 Desalination Technologies and Modeling Tools 46
3.1.1 Desalination Technologies 46
3.1.2 Tools in Desalination Processes Modeling 47
3.1.3 CFD Modeling Tool in Desalination Processes 53
3.2 General Principles of CFD Modeling
in Desalination Processes 54
3.2.1 Reverse Osmosis (RO) Technology 59
3.2.2 Forward Osmosis (FO) Technology 63
3.2.3 Membrane Distillation (MD) Technology 66
3.2.4 Electrodialysis and Electrodialysis Reversal
(ED/EDR) Technologies 71
3.3 Application of CFD Modeling in Desalination 75
3.3.1 Applications in Reverse Osmosis (RO) Technology 75
3.3.2 Applications in Forward Osmosis (FO) Technology 93
3.3.3 Applications in Membrane Distillation (MD)
Technology 106
3.3.4 Applications in Electrodialysis and Electrodialysis
Reversal (ED/EDR) Technologies 119
3.4 Commercial Software Used in Desalination
Process Modeling 120
Conclusion 130
References 131
4 Role of Thermodynamics and Membrane Separations
in Water-Energy Nexus 143
Anupam Mukherjee, Shubham Lanjewar, Ridhish Kumar,
Arijit Chakraborty, Amira Abdelrasoul and Anirban Roy
4.1 Introduction: 1st and 2nd Laws of Thermodynamics 144
4.2 Thermodynamic Properties 146
4.2.1 Measured Properties 146
4.2.2 Fundamental Properties 147
4.2.3 Derived Properties 147
4.2.4 Gibbs Energy 147
4.2.5 1st and 2nd Law for Open Systems 150
4.3 Minimum Energy of Separation Calculation:
A Thermodynamic Approach 151
4.3.1 Non-Idealities in Electrolyte Solutions 152
4.3.2 Solution Thermodynamics 152
4.3.2.1 Solvent 153
4.3.2.2 Solute 153
4.3.2.3 Electrolyte 154
4.3.3 Models for Evaluating Properties 155
4.3.3.1 Evaluation of Activity Coefficients Using
Electrolyte Models 155
4.3.4 Generalized Least Work of Separation 157
4.3.4.1 Derivation 158
4.4 Desalination and Related Energetics 162
4.4.1 Evaporation Techniques 164
4.4.2 Membrane-Based New Technologies 165
4.5 Forward Osmosis for Water Treatment:
Thermodynamic Modelling 171
4.5.1.1 Osmosis 171
4.5.1.2 Draw Solutions 174
4.5.2 Concentration Polarization in Osmotic Process 175
4.5.2.1 External Concentration Polarization 175
4.5.2.2 Internal Concentration Polarization 175
4.5.3 Forward Osmosis Membranes 177
4.5.4 Modern Applications of Forward Osmosis 178
4.5.4.1 Wastewater Treatment
and Water Purification 178
4.5.4.2 Concentrating Dilute Industrial Wastewater 178
4.5.4.3 Concentration of Landfill Leachate 179
4.5.4.4 Concentrating Sludge Liquids 179
4.5.4.5 Hydration Bags 180
4.5.4.6 Water Reuse in Space Missions 180
4.6 Pressure Retarded Osmosis for Power Generation:
A Thermodynamic Analysis 181
4.6.1 What Is Pressure Retarded Osmosis? 181
4.6.2 Pressure Retarded Osmosis for Power Generation 183
4.6.3 Mixing Thermodynamics 184
4.6.3.1 Gibbs Energy of Solutions 184
4.6.3.2 Gibbs Free Energy of Mixing 185
4.6.4 Thermodynamics of Pressure Retarded Osmosis 186
4.6.5 Role of Membranes in Pressure Retarded Osmosis 188
4.6.6 Future Prospects of Pressure Retarded Osmosis 189
4.7 Conclusion 190
4.8 Acknowledgment 190
Nomenclature 190
1. Roman Symbols 190
2. Greek Symbols 191
3. Subscripts 192
4. Superscripts 192
5. Acronyms 192
References 193
5 Modeling and Simulation for Membrane Gas
Separation Processes 197
Samaneh Bandehali, Hamidreza Sanaeepur,
Abtin Ebadi Amooghin and Abdolreza Moghadassi
Abbreviations 197
Nomenclatures 198
Subscipts 199
5.1 Introduction 199
5.2 Industrial Applications of Membrane Gas Separation 201
5.2.1 Air Separation or Production of Oxygen
and Nitrogen 201
5.2.2 Hydrogen Recovery 202
5.2.3 Carbon Dioxide Removal from Natural Gas
and Syn Gas Purification 206
5.3 Modeling in Membrane Gas Separation Processes 206
5.3.1 Mathematical Modeling for Membrane Separation
of a Gas Mixture 206
5.3.2 Modeling in Acid Gas Separation 214
5.4 Process Simulation 217
5.4.1 Gas Treatment Modeling in Aspen HYSYS 218
5.5 Modeling of Gas Separation by Hollow-Fiber Membranes 221
5.6 CFD Simulation 223
5.6.1 Hollow Fiber Membrane Contactors (HFMCs) 223
5.7 Conclusions 224
References 225
6 Gas Transport through Mixed Matrix Membranes (MMMs):
Fundamentals and Modeling 233
Rizwan Nasir, Hafiz Abdul Mannan, Danial Qadir,
Hilmi Mukhtar, Dzeti Farhah Mohshim
and Aymn Abdulrahman
6.1 History of Membrane Technology 233
6.2 Separation Mechanisms for Gases through Membranes 234
6.3 Overview of Mixed Matrix Membranes 238
6.3.1 Material and Synthesis of Mixed Matrix Membrane 238
6.3.2 Performance Analysis of Mixed Matrix Membranes 238
6.4 MMMs Performance Prediction Models 239
6.4.1 New Approaches for Performance Prediction
of MMMs 242
6.5 Future Trends and Conclusions 242
6.6 Acknowledgment 249
References 249
7 Application of Molecular Dynamics Simulation
to Study the Transport Properties of Carbon
Nanotubes-Based Membranes 253
Maryam AhmadzadehTofighy and Toraj Mohammadi
7.1 Introduction 254
7.2 Carbon Nanotubes (CNTs) 255
7.3 CNTs Membranes 259
7.4 MD Simulations of CNTs and CNTs Membranes 261
7.5 Conclusions 267
References 268
8 Modeling of Sorption Behaviour of Water-Ethylene Glycol
Mixture in a PVA/PES Composite Membrane Using
Flory-Huggins Equations 273
Haresh K Dave and Kaushik Nath
8.1 Introduction 274
8.2 Materials and Method 277
8.2.1 Chemicals 277
8.2.2 Preparation and Cross-Linking of Membrane 277
8.2.3 Determination of Membrane Density 277
8.2.4 Sorption of Pure Ethylene Glycol and Water
in the Membrane 278
8.2.5 Sorption of Binary Solution in the Membrane 278
8.2.6 Model for Pure Solvent in PVA/PES Membrane
Using F-H Equation 279
8.2.7 Model for Binary EG-Water Sorption
Using F-H Equation 281
8.3 Results and Discussion 285
8.3.1 Sorption in the PVA-PES Membrane 285
8.3.2 Determination of F-H Parameters Between Water
and Ethylene Glycol (Xw−EG) 286
8.3.3 Determination of F-H Parameters for Solvent
and Membrane (Çwm and ÇEGm) 288
8.3.4 Modeling of Sorption Behaviour Using
F-H Parameters 289
8.4 Conclusions 292
Nomenclature 293
Greek Letters 294
Acknowledgement 294
References 294
9 Artificial Intelligence Model for Forecasting
of Membrane Fouling in Wastewater Treatment
by Membrane Technology 297
Khac-Uan Do and Félix Schmitt
9.1 Introduction 298
9.1.1 Membrane Filtration in Wastewater Treatment 298
9.1.2 Membrane Fouling in Membrane Bioreactors
and its Control 298
9.1.3 Models for Membrane Fouling Control 300
9.1.4 Objectives of the Study 301
9.2 Materials and Methods 301
9.2.1 AO-MBR System 301
9.2.2 The AI Modeling in this Study 301
9.2.3 Analysis Methods 303
9.3 Results and Discussion 304
9.3.1 Membrane Fouling Prediction Based on AI Model 304
9.3.2 Discussion on Using AI Model to Predict
Membrane Fouling 312
9.4 Conclusion 316
Acknowledgements 317
References 317
Index
Back to Top