Search

Browse Subject Areas

For Authors

Submit a Proposal

Biofertilizers

Study and Impact
Edited by Inamuddin, Mohd Imran Ahamed, Rajender Boddula, and Mashallah Rezakazemi
Copyright: 2021   |   Status: Published
ISBN: 9781119724674  |  Hardcover  |  
672 pages
Price: $225 USD
Add To Cart

One Line Description
Edited by one of the most well-respected and prolific engineers in the world and his team, this new volume provides in-depth knowledge about the history, fundamentals, and latest advances in biofertilizers, including the latest reviews, challenges, and future perspectives.

Audience
Mechanical engineers, process engineers, chemical engineers, agrochemists, chemists, environmental engineers, and other engineers and operators working with biofertilizers across many engineering disciplines

Description
Great attention has been paid to reduce the use of conventional chemical fertilizers harming living beings through food chain supplements from the soil environment. Therefore, it is necessary to develop alternative sustainable fertilizers to enhance soil sustainability and agriculture productivity. Biofertilizers are the substance that contains microorganisms (bacteria, algae, and fungi) living or latent cells that can enrich the soil quality with nitrogen, phosphorous, potassium, organic matter, etc. They are a cost-effective, biodegradable, and renewable source of plant nutrients/supplements to improve the soil-health properties. Biofertilizers emerge as an attractive alternative to chemical fertilizers, and as a promising cost-effective technology for eco-friendly agriculture and a sustainable environment that holds microorganisms which enhance the soil nutrients’ solubility leading a raise in its fertility, stimulates crop growth and healthy food safety.

This book provides in-depth knowledge about history and fundamentals to advances biofertilizers, including latest reviews, challenges, and future perspectives. It covers fabrication approaches, and various types of biofertilizers and their applications in agriculture, environment, forestry and industrial sectors. Also, organic farming, quality control, quality assurance, food safety and case-studies of biofertilizers are briefly discussed. This book is an essential guide for farmers, agrochemists, environmental engineers, scientists, students, and faculty who would like to understand the science behind the sustainable fertilizers, soil chemistry and agroecology.


Back to Top
Supplementary Data
--Includes new concepts, case studies, and patents, making this a unique volume among existing resources

--Introduces cutting-edge technology based on biofertilizers

--Describes environmentally accepted biofertilizer technologies and applications

--Reviews biofertilizers as a sustainable renewable source, and documents global fertilizer development


Author / Editor Details
Inamuddin, PhD, is an assistant professor at the Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, India. He has extensive research experience in analytical chemistry, materials chemistry, electrochemistry, renewable energy, and environmental science. He has worked on different research projects funded by various government agencies and universities and is the recipient of multiple awards, including the Fast Track Young Scientist Award and the Young Researcher of the Year Award for 2020, from Aligarh Muslim University. He has published almost 200 research articles in various international scientific journals, 18 book chapters, and 120 edited books with multiple well-known publishers.

Mohd Imran Ahamed, PhD, is a research associate in the Department of Chemistry, Aligarh Muslim University, Aligarh, India. He has published several research and review articles in various international scientific journals and has co-edited multiple books. His research work includes ion-exchange chromatography, wastewater treatment, and analysis, bending actuator and electrospinning.

Rajender Boddula, PhD, is currently working for the Chinese Academy of Sciences President’s International Fellowship Initiative (CAS-PIFI) at the National Center for Nanoscience and Technology (NCNST, Beijing). His academic honors include multiple fellowships and scholarships, and he has published many scientific articles in international peer-reviewed journals. He is also serving as an editorial board member and a referee for several reputed international peer-reviewed journals. He has published edited books with numerous publishers and has authored over twenty book chapters.

Mashallah Rezakazemi, PhD, received his doctorate from the University of Tehran (UT) in 2015. In his first appointment, he served as associate professor in the Faculty of Chemical and Materials Engineering at Shahrood University of Technology. He has co-authored in more than 140 highly cited journal publications, conference articles and book chapters. He has received numerous major awards and grants from various funding agencies in recognition of his research. Notable among these are Khwarizmi Youth Award from the Iranian Research Organization for Science and Technology (IROST), and the Outstanding Young Researcher Award in Chemical Engineering from the Academy of Sciences of Iran. He was named a top 1% most Highly Cited Researcher by Web of Science (ESI).

Back to Top

Table of Contents
Biofertilizer Utilization in Forestry 1
Wendy Ying Ying Liu and Ranjetta Poobathy
1.1 Introduction 2
1.2 Mechanisms of Actions of Biofertilizers 3
1.2.1 Facilitation of N Acquisition 3
1.2.1.1 Mutualistic N2 Fixation 4
1.2.1.2 Non-Symbiotic N2 Fixation 5
1.2.2 Facilitation of P Acquisition 5
1.2.2.1 Phosphate Solubilizing Microorganisms 6
1.2.2.2 Mycorrhizas 7
1.2.3 Potassium Solubilization 8
1.2.4 Production of Siderophores 9
1.2.5 Modulation of Phytohormones 10
1.2.6 Phytoprotection 12
1.3 Factors Influencing the Outcome of Forestry-Related
Biofertilizer Applications 13
1.4 Applications of Biofertilizers in Forestry 16
1.5 Conclusion and Future Prospects 18
References 20
2 Impact of Biofertilizers on Horticultural Crops 39
Wong Clement Kiing Fook and Teh Chui-Yao
2.1 Introduction 40
2.2 Microbial Strains Used in Biofertilizers 41
2.3 Impact of Biofertilizer Application on Horticultural Crops 41
2.3.1 Increased Yield and Quality of Crops 41
2.3.1.1 Vegetable Crops 44
2.3.1.2 Fruit Crops 46
2.3.1.3 Ornamental Plants 48
2.3.2 Enhanced Nutritional Content of Produce 49
2.3.2.1 Mineral-Biofortified Crops 49
2.3.2.2 Enhanced Secondary Metabolites 50
2.3.2.3 Improved Vitamin Content 51
2.3.3 Improved Tolerance Against Biotic Stress 52
2.3.3.1 Fungal and Bacterial Pathogens 52
2.3.3.2 Viral Pathogens 56
2.3.3.3 Insect Pests 58
2.3.3.4 Nematodes 61
2.3.3.5 Weeds 64
2.3.4 Improved Tolerance Against Abiotic Stress 65
2.3.4.1 Drought 66
2.3.4.2 Salinity 68
2.3.4.3 Heavy Metal 70
2.3.4.4 Cold Stress 71
2.3.4.5 Heat Stress 73
2.3.5 Improved Vegetative Propagation Efficiency 73
2.3.5.1 Propagation by Cuttings 73
2.3.5.2 Grafting 74
2.4 Future Perspectives and Challenges Ahead 75
2.5 Conclusion 79
References 79
3 N2 Fixation in Bio-Fertilizers 105
Rekha Sharma, Sapna and Dinesh Kumar
3.1 Introduction 106
3.2 Bio-Fertilizers 108
3.2.1 Origin 108
3.3 Bio-Fertilizer: Transporter Constituents 108
3.4 Mechanism of Actions of Bio-Fertilizers 109
3.5 Biochemistry of Manufacture of Bio-Fertilizer 109
3.6 Benefits of Bio-Fertilizer Over Biochemical Fertilizers 110
3.7 Variances Among Organic and Bio-Fertilizer 111
3.8 Types of Bio-Fertilizers 111
3.9 Microorganisms Utilized to Make Bio-Fertilizer 111
3.10 Microorganism in Nitrogen Fixation 113
3.10.1 Biofertilizers: Symbiotic N-Fixers 113
3.10.2 Biofertilizers: Free Living N-Fixers 114
3.10.3 Biofertilizers: Associative Symbiotic
N-Fixers 114
3.11 Phosphorus Solubilizing Microbes 115
3.12 Conclusion and Future Prospect 115
Acknowledgments 116
Abbreviations 116
References 117
4 Organic Farming by Biofertilizers 121
Anuradha and Jagvir Singh
4.1 Introduction 122
4.2 Biofertilizers 123
4.2.1 Benefits of Biofertilizers 126
4.2.2 Method of Biofertilizer Application 126
4.2.2.1 Seed Treatment 126
4.2.2.2 Seedling Treatment 127
4.2.2.3 Setts and Tuta Treatment 127
4.2.2.4 Soil Treatment 127
4.2.3 Precautions During Application of Biofertilizers 127
4.3 Classification of Biofertilizers 128
4.3.1 Nitrogen Fixer Bacteria 128
4.3.1.1 Commercial Applications 129
4.3.2 Cyanobacteria as Biofertilizers 130
4.3.2.1 Commercial Applications 130
4.3.2.2 Factors Affecting Cyanobacteria
Biofertilizer 131
4.3.3 Mycorrhiza as Biofertilizers 131
4.3.3.1 Ectotrophic Mycorrhiza 132
4.3.3.2 Endotrophic Mycorrhiza 132
4.3.3.3 Changes in Mineral Compounds 133
4.3.3.4 Manure Value and Its Importance 133
4.3.4 Azolla as Biofertilizer 134
4.3.5 Vermicompost 135
4.3.5.1 Method of Vermicompost 135
4.4 Organic Farming 136
4.4.1 Objectives of Organic Farming 136
4.4.2 Benefits of Organic Farming 136
4.4.3 Benefit for Environment 137
4.4.4 Methods of Organic Farming 137
4.4.5 Techniques for Organic Farming 137
4.4.5.1 Crop Diversity 138
4.4.5.2 Soil Management 138
viii Contents
4.4.5.3 Weed Management 138
4.5 Traditional Agriculture vs. Organic and Inorganic
Farming 139
4.5.1 Problems Created by Traditional Farming 139
4.6 Reasons for Doing Organic Farming 140
4.6.1 To Save Soil Health 140
4.6.2 To Preserve Nutrients 141
4.6.3 To Reduce the Cost of Agriculture 141
4.6.4 To Prevent Hazardous Elements in Animal Products 141
4.6.5 To Protect the Environment 141
4.6.6 Natural and Good Taste 142
4.7 Advantage of Organic Farming 142
4.7.1 Good Nutrition 142
4.7.2 Good Health 142
4.7.3 Freedom From Poison 142
4.7.4 Less Money 143
4.7.5 Great Taste 143
4.7.6 Environmental Safety 143
4.8 Disadvantages of Organic Farming 143
4.8.1 Lack of Information 143
4.8.2 Lack of Outline 143
4.8.3 Making More Money in the Beginning 144
4.9 Conclusion 144
Acknowledgement 144
References 144
5 Phosphorus Solubilizing Microorganisms 151
Rafig Gurbanov, Berkay Kalkanci, Hazel Karadag
and Gizem Samgane
5.1 Phosphorus Pollution 152
5.2 Phosphate Solubilization 153
5.3 Microbial Mechanisms of Phosphate Solubilization 155
5.3.1 Organic Phosphate Solubilization 156
5.3.2 Inorganic Phosphate Solubilization 156
5.4 Phosphate-Solubilizing Bacteria 158
5.5 Phosphate-Solubilizing Fungi 160
5.5.1 Phosphate-Solubilizing Fungi as Plant Growth
Promoters 162
5.5.2 The Methods of using Phosphate-Solubilizing
Fungi in Agriculture 164
5.6 Bacteria-Fungi Consortium for Phosphate Solubilization 165
5.7 Conclusions 167
References 167
6 Exophytical and Endophytical Interactions of Plants
and Microbial Activities 183
A. Mbotho, D. Selikane, J.S. Sefadi and M.J. Mochane
6.1 Introduction 184
6.2 Beneficial Interactions 185
6.2.1 Arbuscular Mycorrhizal Fungi 186
6.2.2 Plant Growth-Promoting Microorganisms 189
6.2.3 Rhizobia 193
6.2.4 Endophytes 194
6.3 Pathogenic (Harmful) Interactions 194
6.3.1 Oomycetes 195
6.3.2 Fungi 198
6.3.3 Bacteria 199
6.3.4 Viruses 200
6.4 Summary 203
References 204
7 Biofertilizer Formulations 211
Sana Saif, Zeeshan Abid, Muhammad Faheem Ashiq,
Muhammad Altaf and Raja Shahid Ashraf
List of Abbreviations 212
7.1 Introduction 212
7.1.1 Evolution of Biofertilizers 212
7.1.2 Biofertilizers: A Sustainable Approach 213
7.2 Biofertilizer Formulations 215
7.2.1 Selection of Strain 215
7.2.1.1 Microbial Strains 215
7.3 Types of Formulations 227
7.3.1 Carrier-Based/Powder Formulations 229
7.3.1.1 Selection of Carrier Material 229
7.3.1.2 Sterilization of Carrier 236
7.3.2 Granular Formulations 236
7.3.3 Liquid Formulations 237
7.3.3.1 Inoculant Preparation 238
7.3.3.2 Common Additives 238
7.3.4 Cell Immobilization 239
7.3.4.1 Polymer Entrapped Formulations 240
7.3.4.2 Advantages and Constrains 242
7.3.5 Fluid Bed Dried Formulation 243
7.3.6 Mycorrhizal Formulations 244
7.4 Stickers 245
7.5 Additives 245
7.6 Packaging 246
7.7 Conclusion 247
References 247
8 Scoping the Use of Transgenic Microorganisms
as a Potential Biofertilizers for Sustainable Agriculture
and Environmental Safety 257
Vasavi Rama Karri and Nirmala Nalluri
8.1 Introduction 258
8.2 Role of Nitrogen in Plant Growth and Development 260
8.2.1 Microorganisms Involved in Nitrogen Fixation 260
8.3 Importance of Phosphorus 261
8.3.1 Microbes Involved in Phosphate Solubilization 262
8.3.2 Reducing the pH of Soil 262
8.3.3 Mineralization 263
8.3.4 Chelation 263
8.3.5 Promotion of Plant Growth by PSMs 263
8.3.6 Approach of Using PSMs as Biofertilizer
and the Future Perspective 264
8.4 Significance of Potassium (K) 265
8.4.1 Microorganisms Involved in Potassium
Hydrolyzation 265
8.4.2 Effect of KSB on Plant Growth and Yield 266
8.4.3 Abilities and Objections of K Solubilizing Bacteria 266
8.4.4 Biofertilizers Used in Agriculture 267
8.4.5 Mycorrhiza 268
8.5 Plant Growth-Promoting Rhizobacteria (PGPR) 268
8.6 Role of Biotechnology in Agricultural Sector 268
8.6.1 Development of Potent Microbial Strains Through
Genetic Engineering Approach to Produce Efficient
Biofertilizers 269
8.6.2 Genetically Altered Transgenic Azotobacter
vinelandiias an Effective Diazotrophs Biofertilizer 270
8.6.3 Phytostimuators and Biofertilizers 271
8.6.4 Azospirillum 272
8.6.5 Generation of Genetically Modified Transgenic
Azospirillum Strains With Enhanced Levels of
Phytoharmone Secretion 274
8.6.6 Development of Rhizobium Strains With Increased
Competitiveness by Genetic Modification 275
8.6.7 Effect of GM Rhizobial strains on Arbuscular
Mycorrhizal (AM) Fungi 278
8.6.8 Release of Genetically Manipulated Rhizobium
for Field Trails 279
Conclusion 280
Acknowledgements 281
References 281
9 Biofertilizer Utilization in Agricultural Sector 293
Osikemekha Anthony Anani, Charles Oluwaseun Adetunji,
Osayomwanbo Osarenotor and Inamuddin
9.1 Introduction 294
9.2 Application of Biofertilizer as Bioaugmentation Agent
for Bioremediation of Heavily Polluted Soil 295
9.3 Advantages of Biofertilizer in Comparison
With Synthetic Fertilizer 296
9.4 Specific Examples of as Biofertilizer for Crop
Improvement in Agricultural Sector 298
9.5 Management of Biotic and Abiotic Stress 301
9.6 Combinatory Effect of Biofertilizer With Other
Substance and Their Effect on Crops 303
9.7 Conclusion and Recommendation to Knowledge 305
References 306
10 Azospirillum: A Salient Source for Sustainable Agriculture 309
Rimjim Gogoi, Sukanya Baruah and Jiban Saikia
10.1 Introduction 309
10.1.1 The Genus Azospirillum 311
10.1.2 Properties of Azospirillum spp. 312
10.1.2.1 Chemotaxis 312
10.1.2.2 Aerotaxis 313
10.1.2.3 Formation of Cysts and Aggregates
or Flocs 313
10.1.2.4 Survivability in Rhizosphere and Bulk Soil 314
10.1.2.5 Competition With Other Soil
Microorganisms 316
10.1.2.6 Association With Plant Roots 316
10.2 Azospirillum and Induction of Stimulatory Effects
for Promoting Plant Growth 318
10.3 Applications in Various Fields 320
10.4 Current Status 324
10.5 Challenges in Large-Scale Commercial Applications
of Azospirillum Inoculants 327
10.6 Programs Employed for Enhanced Applications
of Azospirillum Inoculants 328
10.7 Future Prospects 329
References 330
11 Actinomycetes: Implications and Prospects
in Sustainable Agriculture 335
V. Shanthi
11.1 Introduction 336
11.2 Role in Maintaining Soil Fertility 338
11.2.1 Nitrogen Fixation 338
11.2.2 Phosphate Solubilization 340
11.2.3 Potassium Solubilization 342
11.3 Role in Maintaining Soil Ecology 342
11.4 Role as Biocontrol Agents 345
11.4.1 Production of Antibiotics 346
11.4.2 Production of Siderophores 348
11.4.3 Production of Hydrogen Cyanide 349
11.4.4 Production of Lytic Enzymes 349
11.5 Role as Plant Stress Busters 351
11.5.1 Resistance From Heavy Metal Toxicity 352
11.5.2 Resistance Against Drought/Water Deficit 354
11.5.3 Resistance Toward Salinity 355
11.6 Conclusion 355
11.7 Future Perspectives 356
References 357
12 Influence of Growth Pattern of Cyanobacterial Species
on Biofertilizer Production 371
Jasti Tejaswi, Kaligotla Venkata Subrahmanya Anirudh,
Lalitha Rishika Majeti, Viswanatha Chaitanya Kolluru
and Rajesh K Srivastava
12.1 Introduction 371
12.2 Habit and Habitat of Cyanobacteria 373
12.3 Morphology and Mode of Reproduction 373
12.4 Role of a Fertilizer in Plant Growth 375
12.4.1 Synthetic Fertilizers 376
12.4.2 Organic Fertilizers 377
12.4.3 Biofertilizer 377
12.5 Cyanobacteria as Biofertilizer 379
12.6 Production of Cyanobacteria 381
12.7 Methods for In Vitro Culture of Cyanobacteria 382
12.7.1 Macro- and Microelements 382
12.7.2 Temperature 383
12.7.3 Light and Cell Density 383
12.7.4 Media 383
12.8 Methods for Gene Transfer into Cyanobacteria 384
12.8.1 DNA-Mediated Transformation 385
12.8.2 Electroporation 385
12.8.3 Conjugation 386
12.8.4 Biolistic Method 386
12.9 Conclusion and Future Prospects 386
12.10 Abbreviations 387
References 388
13 Biofertilizers Application in Agriculture: A Viable Option
to Chemical Fertilizers 393
Rajesh K. Srivastava
13.1 Introduction 394
13.2 Chemical Fertilizer 397
13.2.1 Customized Fertilizers 400
13.2.2 Fortified Fertilizer 400
13.3 Biofertilizers 400
13.3.1 Biocompost 403
13.3.2 Trichocard 404
13.3.3 Trichocard Production 405
13.3.4 Azotobacter 405
13.3.5 Phosphorus 406
13.3.6 Vermicompost 406
13.4 Conclusion 408
13.5 Abbreviations 408
References 408
14 Quality Control of Biofertilizers 413
Swati Agarwal, Sonu Kumari and Suphiya Khan
14.1 Introduction 413
14.2 Biofertilizer Requirement and Supply 414
14.3 Process of Biofertilizer Quality Control 416
14.4 Requirement of Quality Control 417
14.5 Methods for Quality Testing 421
14.5.1 Microbiological Methods 422
14.5.2 Serological Methods 422
16.5.3 Molecular Methods 423
14.6 Conclusion 423
Acknowledgement 423
References 424
15 Biofertilizers: Characteristic Features and Applications 429
Tanushree Chakraborty and Nasim Akhtar
15.1 Introduction 430
15.2 Types of Biofertilizers 430
15.3 Cracateristic Features and Applications of Biofertilizers 431
15.3.1 Cyanobacteria Biofertilizer 431
15.3.2 Actinomycetes 435
15.3.3 Rhizobium leguminosarum bv. Trifolii 436
15.3.4 Arbuscular Mycorrhizal Fungi (AMF) 436
15.3.5 Bacillus thuringiensis 437
15.3.6 Microalgae 438
15.4 Phosphate Solubilizing Bacteria (PSB) and Fungus (PSF) 438
15.4.1 Azotobacter 439
15.4.2 Azospirillum 440
15.4.3 Paenibacillus 440
15.4.4 Phyllosphere Associated Methylobacterium 441
15.4.5 MO Plus Biofertilizer 441
15.5 Effect of Biofertilizer on Various Plants
(Experimental Design) 442
15.5.1 Azotobacter spp. (AZT) and Azospirillum
spp. (AZP) on Eucalyptus grandis 442
15.5.2 Bradyrhizobium Strains and Streptomyces
griseoflavus on Some Legumin1ous, Cereal,
and Vegetable Crops 443
15.5.3 Rhizobium and Rhizobacteria on Trifolium repens 444
15.5.4 Arbuscular Mycorrhizal and Phosphate
Solubilizing Fungi on Coffee Plants 445
15.5.5 Glutamicibacter halophytocola KLBMP 5180
on Tomato Seedlings 446
15.6 Screening of Microbes for Biofertilizer 447
15.6.1 Screening for Phosphate Solubilization 447
15.6.2 Screening for Potassium Solubilizing 447
15.6.3 Screening for Nitrogen-Fixing 448
15.6.4 Screening for Zinc Solubilization 448
15.6.5 Screening for Ammonia Production 448
15.6.6 Screening for Hydrogen Cyanide (HCN)
Production 448
15.6.7 Screening for Siderophores 448
15.6.8 Screening for Auxin Production 449
15.6.9 Screening for Gibberellic Acid Production 449
15.6.10 Screening for Production of Chitinase 449
15.7 Limitations of Biofertilizers 449
15.8 Success of Biofertilizer 450
15.9 Debottlenecking 453
15.10 Optimization of Biofertilizer 456
15.10.1 Optimization of Phosphate Solubilization 456
15.11 Concomitant of Biofertilizer 458
15.12 New Approach 458
15.13 Conclusion and Future Prospects 459
References 460
16 Fabrication Approaches for Biofertilizers 491
Andrew N. Amenaghawon, Chinedu L. Anyalewechi
and Heri Septya Kusuma
16.1 Introduction 492
16.2 Biofertilizers 492
16.3 Types of Biofertilizers 493
16.3.1 Nitrogen-Fixing Biofertilizers 493
16.3.1.1 Rhizobium 494
16.3.1.2 Azospirillum 494
16.3.1.3 Azotobacter 495
16.3.2 Phosphorus-Solubilizing Biofertilizers 495
16.3.3 Phosphate-Mobilizing Biofertilizer (Mycorrhizae) 496
16.3.4 Potassium Biofertilizer 497
16.3.5 Growth-Promoting Biofertilizers 497
16.3.6 Blue-Green Algae (Cyanobacteria) 498
16.4 Preparation Approaches for Biofertilizers 499
16.4.1 Inoculant Formulation 499
16.4.2 Carriers for Biofertilizer Preparation 500
16.4.2.1 Sterilized Carriers 500
16.4.3 Carrier Form 501
16.5 Methods of Biofertilizer Formulation 501
16.5.1 Solid-Based Carrier Bioformulation 501
16.5.1.1 Peat Formulations 502
16.5.2 Liquid Inoculants Formulation 503
16.5.3 Polymer-Based Formulation 504
16.5.3.1 Alginate Formulations 504
16.5.4 Fluidized Bed Dried Formulation 504
16.5.5 Particles From Gas Saturated Solutions
(PGSS) Method 505
16.5.6 Bionanoformulations 505
16.6 Application Modes for Biofertilizers 506
16.6.1 Seed Treatment 506
16.6.2 Seedling Root Dipping 506
16.6.3 Soil Application 507
16.7 Factors Affecting the Preparation of Biofertilizers 507
16.8 Beneficial Effects of Biofertilizers 508
16.9 Challenges and Limitations of Biofertilizers 509
16.10 Future Prospects 509
16.11 Conclusion 510
References 511
17 Biofertilizers From Waste 517
Rafaela Basso Sartori, Ihana Aguiar Severo,
Álisson Santos Oliveira, Paola Lasta, Leila Queiroz Zepka
and Eduardo Jacob-Lopes
17.1 Introduction 518
17.2 Waste Sources 519
17.3 Technologies for Waste Treatment 521
17.3.1 Conventional Technologies 521
17.3.2 Emerging Technologies 522
17.3.2.1 Nutrients Recovery From Wastes
by Microalgae 523
17.3.2.2 Overall Process Operations 526
17.4 Main Applications of Microalgae Biofertilizers 528
17.4.1 Fertility and Soil Quality 528
17.4.1.1 Nitrogen Fixation 528
17.4.1.2 Carbon Sequestration 529
17.4.1.3 Soil Organic Matter, Improvement,
and Recovery 530
17.4.2 Promotion of Plant Growth, Disease,
and Pest Control 531
17.4.2.1 Plant Colonization and Hormone
Production 531
17.4.2.2 Disease and Pest Control 532
17.5 Final Considerations and Recommendations 532
References 533
18 Biofertilizers Industry Profiles in Market 541
Kashish
18.1 Biofertilizers and Biofertilizer Technology 541
18.1.1 Benefits of Different Biofertilizers 542
18.2 Limitations in Usage of Biofertilizers 543
18.3 Biofertilizer Market Segments 544
18.4 Biofertilizers Market Drivers in India 546
18.5 Present Scenario of Biofertilizer Market 547
18.6 Key Players of Biofertilizers in Indian Market 549
18.7 Problems in Promotion of Biofertilizer 550
18.8 Popular Marketed Biofertilizers in Indian Market 553
18.9 Recent Trends in Biofertilizer: Liquid Biofertilizer 554
18.9.1 Specialties of Liquid Biofertilizer 554
18.10 Conclusion and Future Scope 555
References 556
19 Case Study on Biofertilizer Utilization in African Continents 561
Osikemekha Anthony Anani and Charles Oluwaseun Adetunji
19.1 Introduction 562
19.2 Specific Examples of Biofertilizer for Crop Improvement,
Environmental Bioremediation, and Their Advantages
and Challenges in Africa 563
19.3 Conclusion and Future Recommendations 570
References 570
20 Biofertilizers: Prospects and Challenges for Future 575
Tanushree Chakraborty and Nasim Akhtar
20.1 Introduction 576
20.2 Definition 579
20.2.1 Helper Bacteria 579
20.2.2 The Point of Difference 580
20.3 Advances in Biofertilizer 580
20.4 Preparation of Biofertilizer 581
20.5 The Carrier Materials 581
20.6 Production System of Biofertilizer 582
20.7 Mechanism of Growth-Promoting Activity
of Biofertilizers 583
20.8 Advantages and Limitations 584
20.9 Future Aspects 584
20.10 Conclusion 585
References 586
21 Biofertilizers: Past, Present, and Future 591
Mukta Sharma and Manoj Sharma
21.1 Introduction 592
21.2 Biofertilizer: A Brief History 593
21.3 Biofertilizer Classification 594
21.4 Different Paradigms of Biofertilizers 596
21.4.1 Impregnation of Fertilizers and Fertilizer Use
Efficiency 596
21.4.2 Inoculants of Mixtures of Microorganisms 597
21.4.3 Different Formulations of Inoculants 597
21.4.4 Inoculant Carrier 598
21.4.5 Biofertilizer Carriers and Liquid Formulations 599
21.4.6 Controlled Release Techniques: Encapsulation,
Lyophilization, and Drying 600
21.5 Biofertilizers: Current Status 601
21.6 Biofertilizers: Future Paradigm 601
21.7 Conclusion 602
References 603
22 Algal Biofertilizer 607
Muhammad Mudassir Iqbal, Gulzar Muhammad,
Muhammad Shahbaz Aslam, Muhammad Ajaz Hussain,
Zahid Shafiq and Haseeba Razzaq
22.1 Introduction 608
22.2 Algae and Algal Biofertilizers 609
22.2.1 Algae is a Polyphyletic Functional Group 609
22.2.2 Multifaceted Role of Algal Biofertilizer
in Sustainable Cultivation 610
22.2.3 Biostimulants From Algae 612
22.3 Techniques of Application of Algal Biofertilizer 613
22.3.1 Algal Extracts as Biofertilizer 613
22.3.2 Addition of Algal Strains and Algal
Biofertilizer to Soil 619
22.4 Cultivation of Algae and Production of Algal Biofertilizer 625
22.5 Conclusion 630
References 630
Index 636

Back to Top


BISAC SUBJECT HEADINGS
TEC003070 : TECHNOLOGY & ENGINEERING / Agriculture / Sustainable Agriculture
SCI007000 : SCIENCE / Life Sciences / Biochemistry
GAR022000 : GARDENING / Techniques
 
BIC CODES
TCB: Biotechnology
TVKF: Fertilizers & manures
RNU: Sustainability

Back to Top


Description
BISAC & BIC Codes
Author/Editor Details
Table of Contents
Bookmark this page