This book addresses conventional and modern azimuthal probe sampling tool design, offers physical insights, hardware innovations and versatile pressure analysis methods, for both older and newer well logging instruments.
Table of ContentsPreface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1. Formation Testing – Background, Perspectives and New
Industry Requirements . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Formation Testing – A Brief Introduction . . . . . . . . . . . 1
1.2 Conventional Formation Testing Concepts . . . . . . . . . . 6
1.3 A New Triple Probe Tool – Design Concepts and Well
Logging Advantages . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Azimuthal flow signal strength
(circumferential probes) . . . . . . . . . . . . . . . . 9
1.3.2 Axial signal strength (centerline oriented dual
probes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Hardware and software considerations
simulation considerations . . . . . . . . . . . . . . . . 21
1.3.4 Closing remarks . . . . . . . . . . . . . . . . . . . . . 24
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Visual Tour in Formation Testing, Design and
Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Detailed Mechanical CAD Animation . . . . . . . . . . . . . 26
2.2 From Drawing Board to Engineering Prototyping . . . . . . 35
2.3 Manufacturing Highlights and Production . . . . . . . . . . . 39
2.4 Laboratory Facilities with Formation Testing
Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Beijing Test Well and Logging Facilities . . . . . . . . . . . 42
2.6 Tool Positioning in Beijing Test Well . . . . . . . . . . . . . 44
2.7 Field Operations – Bohai Bay and Middle East . . . . . . . . 45
2.8 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3. Triple Probe Formation Tester – from Idea to Design to
Field Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Laboratory Highlights – Triple Probe Formation
Tester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Triple Probe Close-ups in Field Test . . . . . . . . . . . . . . 53
3.3 Positioning the Tool in the Well . . . . . . . . . . . . . . . . . 56
3.4 Example Pressure Testing Well Logs . . . . . . . . . . . . . 59
3.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4. Project Background – Analysis, Modeling and
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Well Logging Advantages . . . . . . . . . . . . . . . . . . . . 64
4.2 Math Model Perspectives . . . . . . . . . . . . . . . . . . . . . 65
4.3 Related Formation Testing Literature. . . . . . . . . . . . . . 68
4.4 Background Schlumberger Results . . . . . . . . . . . . . . . 71
4.5 Analysis of MDT Pressure Data . . . . . . . . . . . . . . . . . 73
4.6 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5. Dual Probe Analysis for Thamama Formation . . . . . . . . 76
5.1 Thamama Formation Problem Definition . . . . . . . . . . . 76
5.2 FT-Multiprobe Simulation . . . . . . . . . . . . . . . . . . . . 78
5.3 FT-00 Forward Simulation . . . . . . . . . . . . . . . . . . . . 87
5.4 FT-01 Inverse Analysis . . . . . . . . . . . . . . . . . . . . . . 89
5.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6. Dual Probe Application for Wara Formation . . . . . . . . . 92
6.1 Wave Formation Data Description . . . . . . . . . . . . . . . 92
6.2 FT-Multiprobe History Matching . . . . . . . . . . . . . . . . 93
6.3 FT-00 and FT-01 Analysis for Sink and Vertical
Probe Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7. Multiprobe Flow Modeling Strategies . . . . . . . . . . . . . . 104
7.1 Triple-probe Formation Testing Instrument . . . . . . . . . . 104
7.1.1 Background remarks. . . . . . . . . . . . . . . . . . . . 104
7.1.2 Multiprobe tool introduction . . . . . . . . . . . . . . . 106
7.2 Dual and Triple-probe Steady Flow Modeling . . . . . . . . 112
7.2.1 Background – Sources, sinks, doublets and more . . 112
7.2.2 Modeling hierarchies . . . . . . . . . . . . . . . . . . . 112
7.2.3 Exact steady flow pressure analysis . . . . . . . . . . . 114
7.2.4 Exact streamline tracing and geometric analysis . . . 117
7.2.5 Unbalanced doublet flows – a new approach . . . . . 118
7.3 Transient Numerical Model . . . . . . . . . . . . . . . . . . . 123
7.3.1 Simulator overview . . . . . . . . . . . . . . . . . . . . 123
7.3.2 Computational details . . . . . . . . . . . . . . . . . . . 125
7.3.3 Flowline volume storage modeling . . . . . . . . . . . 125
7.3.4 Active flowline volume coupling at
observation probes . . . . . . . . . . . . . . . . . . . . . 126
7.3.5 Mud filtrate invasion and supercharging, and
underbalanced drilling. . . . . . . . . . . . . . . . . . . 126
7.3.6 Periodicity conditions in flows from circular
wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8. Multiprobe Applications – Detailed Examples and
Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.1 Drawdown for Round and Slot Nozzles With and Without
Mud Filtrate Migration Through the Sandface . . . . . . . . 134
Example 1. Simple drawdown, round nozzle, no
invasion . . . . . . . . . . . . . . . . . . . . . . . 134
Example 2. Simple drawdown, round nozzle, invasion
with supercharging, 200 psi overbalance. . . . 143
Example 3. Simple drawdown, round nozzle, invasion with
strong supercharging, 2,000 psi
overbalance . . . . . . . . . . . . . . . . . . . . . 147
Example 4. Simple drawdown, round nozzle, underbalanced
drilling, 100 psi underbalance . . . . . . . . . . 149
Example 5. Simple drawdown, slot nozzle, no
invasion . . . . . . . . . . . . . . . . . . . . . . . 151
Example 6. Simple drawdown, three pumping slot nozzles,
no invasion . . . . . . . . . . . . . . . . . . . . . 156
8.2 Highly Transient Applications, Drawdown and Buildup,
Multiple Round or Slot Nozzles, No Invasion . . . . . . . . 160
Example 7. Simple drawdown and buildup, single round
nozzle . . . . . . . . . . . . . . . . . . . . . . . . 160
Example 8. Three round nozzles executing drawdown and
buildup simultaneously and independently,
no invasion . . . . . . . . . . . . . . . . . . . . 165
Example 9. Two round nozzles, one withdrawing fluid, the
second simultaneously injecting, no
invasion . . . . . . . . . . . . . . . . . . . . . . 170
Example 10. Invasion or supercharge characterization
in transient problems. . . . . . . . . . . . . . . 174
8.3 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . 178
Example 11. A complicated simulation, effect of pore pressure
in output displays. . . . . . . . . . . . . . . . . 178
Example 12. Batch processing capabilities. . . . . . . . . . 183
Example 13. Spherical flow evaluation and geometric
factors . . . . . . . . . . . . . . . . . . . . . . . 191
Example 14. Pressure behavior at permeability
extremes . . . . . . . . . . . . . . . . . . . . . . 194
Example 15. Comparing problems with and without
supercharge . . . . . . . . . . . . . . . . . . . . 197
9. Special Topics – Gas Release, Convergence Acceleration,
Big Data and Inverse Methods . . . . . . . . . . . . . . . . . . 200
9.1 Suppressing Dissolved Gas Release. . . . . . . . . . . . . . . 201
Bubble point considerations . . . . . . . . . . . . . . . . . . . 201
Example 1. Undesirable dissolved gas release . . . . . . . . 202
Example 2. Dissolved gas remains in solution . . . . . . . . 207
9.2 Steady Flow Convergence Acceleration for Interpretation
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Interpretation applications . . . . . . . . . . . . . . . . . . . 213
Validating convergence accelerations . . . . . . . . . . . . . 214
Big data inverse applications . . . . . . . . . . . . . . . . . . 219
9.3 Heterogeneity and Dip Detection Using Multiple Firings . . 219
9.4 Triple Probe Tools with Different Nozzle Geometries. . . . 225
9.5 Inverse Problems for Azimuthal and Axial Probe
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.5.1 Azimuthal inverse problem. . . . . . . . . . . . . . . . 229
Steady flow forward calculations . . . . . . . . . . . . 231
Limited (kh,kv) range example . . . . . . . . . . . . . 231
Inverse permeability predictions . . . . . . . . . . . . 241
Algorithm analysis . . . . . . . . . . . . . . . . . . . . . 241
Wider (kh,kv) permeability example . . . . . . . . . 247
Inverse method recapitulation . . . . . . . . . . . . . . 251
Data integrity in “big data” implementation . . . . . . 254
Azimuthal inverse strategies . . . . . . . . . . . . . . . 256
9.5.2 Axial inverse problem for any dip angle . . . . . . . . 257
9.5.2.1 Dual probe anisotropy inverse analysis. . . . 257
Existing source model simulators . . . . . . . 258
9.5.2.2 Supercharging – Effects of nonuniform initial
pressure . . . . . . . . . . . . . . . . . . . . . . 267
Conventional zero supercharge model . . . . 268
Supercharge “Fast Forward” solver . . . . . . 269
9.5.2.3 Multiprobe “DOI,” inverse and barrier
analysis . . . . . . . . . . . . . . . . . . . . . . 275
9.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10. Integrated Multiprobe Modeling System . . . . . . . . . . 284
Section 1 – General transient 3D simulator . . . . . . . . . . 286
10.1 Overall Capabilities and Enhancements . . . . . . . . . . 286
10.2 The “Steady” Check-box Option for Low and High
Permeability Flows . . . . . . . . . . . . . . . . . . . . . . 291
10.3 Flows with Mixed Nozzle Designs and Different
Pumping Schedules . . . . . . . . . . . . . . . . . . . . . . 294
Run 1. All round nozzles with staggered flow rates . . 294
Run 2. All slotted nozzles with staggered flow rates . . 296
Run 3. All slotted nozzles with identical flow rates . . 297
Run 4. Slot, round, slot combination with identical
flow rates . . . . . . . . . . . . . . . . . . . . . . . 300
Run 5. Round, slot, round combination with identical
flow rates . . . . . . . . . . . . . . . . . . . . . . . 301
10.4 Geometric Factor Role in Model and Tool Calibration . 303
10.4.1 Model calibration . . . . . . . . . . . . . . . . . . 303
10.4.2 Tool and software calibration . . . . . . . . . . . 306
10.5 Pad Nozzles with Different Orifice Sizes and Shapes . . 307
10.6 Pore Pressure Determination with Triple Probe Tool
and Effects of Supercharge . . . . . . . . . . . . . . . . . . 309
vii
Section 2 – Steady Simulator and Inverse
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.7 Software Reference Overview . . . . . . . . . . . . . . . . 312
10.8 General Transient 3D Simulator in Batch Mode . . . . . 315
10.9 Rapid Steady 3D Simulator in Batch Mode . . . . . . . . 319
10.10 Big Data Inverse Approach and Examples. . . . . . . . . 333
10.10.1 Run 1. Center pumping probe, two
observation probes with a first viscosity guess . . . . . . 333
10.10.2 Run 2. Center pumping probe, two
observation probes with a second viscosity guess . . . . 348
10.10.3 Run 3. Three pumping probes in drawdown
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.10.4 Run 4. Two pumping probes in drawdown
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.11 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . 361
Cumulative References . . . . . . . . . . . . . . . . . . . . . . . . . 362
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Back to Top