Search

Browse Subject Areas

For Authors

Submit a Proposal

Multiprobe Pressure Analysis and Interpretation

By Tao Lu, Minggao Zhou, Yongren Feng, Yuqing Yang and Wilson Chin
Series: Advances in Petroleum Engineering
Copyright: 2021   |   Status: Published
ISBN: 9781119760658  |  Hardcover  |  
400 pages
Price: $225 USD
Add To Cart

One Line Description
This book addresses conventional and modern azimuthal probe sampling tool design, offers physical insights, hardware innovations and versatile pressure analysis methods, for both older and newer well logging instruments.

Audience
Petroleum engineers, petrophysicists, log analysts, drillers, geologists, students and educators

Description
A popular 1990s formation tester with a single “pumping” probe and one passive “observation port” displaced 180 deg away, designed to measure pressures at two locations for permeability prediction, encounters well known detection problems at low mobilities. This book, using aerodynamics methods, explains why and also reveals the existence of a wide stagnation zone that hides critical formation details. And it does much more. An exact analytical solution is used to validate a new transient, three-dimensional, finite difference model for more general testers, one that guides new hardware designs with independent azimuthally displaced probes having with different rates, flow schedules and nozzle geometries, supports interpretation and formation evaluation, and assists with job planning at the rigsite. The methods also apply to conventional tools, allowing comparisons between older and newer technologies. Importantly, the authors introduce a completely new three-probe design with independently operable active elements that eliminate all older tool deficiencies.

Numerous subjects are discussed, such as pressure transient analyses with multiple operating probes, supercharge analysis with invasion and mudcake buildup, accurate and rapid calculations that allow more than 1,000 simulations per minute, extremely rapid batch mode calculations using convergence acceleration methods, rapid fluid withdrawal with minimal dissolved gas release, dip angle, heterogeneity and anisotropy evaluation, and many other topics. In addition, tool operation sequences, detailed engineering and design functions, field test procedures and laboratory facilities, are discussed and illustrated in photographs that go “behind the scenes” at one of the world’s largest international oil service companies. The book hopes to educate new engineers and veteran engineers alike in hardware and software design at a time when increasing efficiency is crucial and “doing more with less” represents the new norm.



Back to Top
Supplementary Data
--Covers multiprobe pressure transient analysis for practical applications

--Provides coverage of formation tester designs, limitations, advantages

--Includes a description of physics of the flowfield, to solve daily problems for the practicing engineer

--Includes rapid, three-dimensional, transient analysis and simulation, inverse methods, permeability prediction, and rigsite job planning



Author / Editor Details
Tao Lu, PhD, Vice President, China Oilfield Services Limited, leads the company’s logging and directional well R&D activities, also heading its formation testing research, applications and marketing efforts. Mr. Lu is recipient of numerous awards, including the National Technology Development Medal, National Engineering Talent and State Council Awards, and several COSL technology innovation prizes.

Minggao Zhou, Senior Mechanical Engineer at COSL’s Oil Field Technology Research Institute, holds a Master’s Degree in Engineering and leads the company’s formation testing project team. He has worked extensively in research and development over the past two decades and has participated in several National Five Year Programs. His professional interests span a wide range of well logging instruments, presently focusing
on formation testing design and interpretation.

Yongren Feng is a Professor Level Senior Engineer and Chief Engineer at the Oilfield Technology Research Institute of China Oilfield Services Limited. He has been engaged in the research and development of offshore oil logging instruments for three decades, mainly responsible for wireline formation testing technology, electric core sampling methods and formation testing while drilling (FTWD) tool development.

Yuqing Yang, PhD, Chief Engineer and Professor, Technology and Exploration, with China Oilfield Services Limited, is engaged in the research and management of geological applications of logging data. He has published several books, ten patents and sixty articles, winning a COSL Science and Technology Progress Award.

Wilson Chin earned his PhD from M.I.T. and his M.Sc. from Caltech. He has authored over twenty books with Wiley-Scrivener and other major scientific publishers, has more than four dozen domestic and international patents to his credit, and has published over one hundred journal articles, in the areas of reservoir engineering, formation testing, well logging, Measurement While Drilling, and drilling and cementing rheology. Inquiries: wilsonchin@aol.com.

Back to Top

Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1. Formation Testing – Background, Perspectives and New
Industry Requirements . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Formation Testing – A Brief Introduction . . . . . . . . . . . 1
1.2 Conventional Formation Testing Concepts . . . . . . . . . . 6
1.3 A New Triple Probe Tool – Design Concepts and Well
Logging Advantages . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Azimuthal flow signal strength
(circumferential probes) . . . . . . . . . . . . . . . . 9
1.3.2 Axial signal strength (centerline oriented dual
probes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Hardware and software considerations
simulation considerations . . . . . . . . . . . . . . . . 21
1.3.4 Closing remarks . . . . . . . . . . . . . . . . . . . . . 24
1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Visual Tour in Formation Testing, Design and
Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Detailed Mechanical CAD Animation . . . . . . . . . . . . . 26
2.2 From Drawing Board to Engineering Prototyping . . . . . . 35
2.3 Manufacturing Highlights and Production . . . . . . . . . . . 39
2.4 Laboratory Facilities with Formation Testing
Fixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5 Beijing Test Well and Logging Facilities . . . . . . . . . . . 42
2.6 Tool Positioning in Beijing Test Well . . . . . . . . . . . . . 44
2.7 Field Operations – Bohai Bay and Middle East . . . . . . . . 45
2.8 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3. Triple Probe Formation Tester – from Idea to Design to
Field Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1 Laboratory Highlights – Triple Probe Formation
Tester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Triple Probe Close-ups in Field Test . . . . . . . . . . . . . . 53
3.3 Positioning the Tool in the Well . . . . . . . . . . . . . . . . . 56
3.4 Example Pressure Testing Well Logs . . . . . . . . . . . . . 59
3.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4. Project Background – Analysis, Modeling and
Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.1 Well Logging Advantages . . . . . . . . . . . . . . . . . . . . 64
4.2 Math Model Perspectives . . . . . . . . . . . . . . . . . . . . . 65
4.3 Related Formation Testing Literature. . . . . . . . . . . . . . 68
4.4 Background Schlumberger Results . . . . . . . . . . . . . . . 71
4.5 Analysis of MDT Pressure Data . . . . . . . . . . . . . . . . . 73
4.6 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5. Dual Probe Analysis for Thamama Formation . . . . . . . . 76
5.1 Thamama Formation Problem Definition . . . . . . . . . . . 76
5.2 FT-Multiprobe Simulation . . . . . . . . . . . . . . . . . . . . 78
5.3 FT-00 Forward Simulation . . . . . . . . . . . . . . . . . . . . 87
5.4 FT-01 Inverse Analysis . . . . . . . . . . . . . . . . . . . . . . 89
5.5 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6. Dual Probe Application for Wara Formation . . . . . . . . . 92
6.1 Wave Formation Data Description . . . . . . . . . . . . . . . 92
6.2 FT-Multiprobe History Matching . . . . . . . . . . . . . . . . 93
6.3 FT-00 and FT-01 Analysis for Sink and Vertical
Probe Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7. Multiprobe Flow Modeling Strategies . . . . . . . . . . . . . . 104
7.1 Triple-probe Formation Testing Instrument . . . . . . . . . . 104
7.1.1 Background remarks. . . . . . . . . . . . . . . . . . . . 104
7.1.2 Multiprobe tool introduction . . . . . . . . . . . . . . . 106
7.2 Dual and Triple-probe Steady Flow Modeling . . . . . . . . 112
7.2.1 Background – Sources, sinks, doublets and more . . 112
7.2.2 Modeling hierarchies . . . . . . . . . . . . . . . . . . . 112
7.2.3 Exact steady flow pressure analysis . . . . . . . . . . . 114
7.2.4 Exact streamline tracing and geometric analysis . . . 117
7.2.5 Unbalanced doublet flows – a new approach . . . . . 118
7.3 Transient Numerical Model . . . . . . . . . . . . . . . . . . . 123
7.3.1 Simulator overview . . . . . . . . . . . . . . . . . . . . 123
7.3.2 Computational details . . . . . . . . . . . . . . . . . . . 125
7.3.3 Flowline volume storage modeling . . . . . . . . . . . 125
7.3.4 Active flowline volume coupling at
observation probes . . . . . . . . . . . . . . . . . . . . . 126
7.3.5 Mud filtrate invasion and supercharging, and
underbalanced drilling. . . . . . . . . . . . . . . . . . . 126
7.3.6 Periodicity conditions in flows from circular
wells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8. Multiprobe Applications – Detailed Examples and
Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.1 Drawdown for Round and Slot Nozzles With and Without
Mud Filtrate Migration Through the Sandface . . . . . . . . 134
Example 1. Simple drawdown, round nozzle, no
invasion . . . . . . . . . . . . . . . . . . . . . . . 134
Example 2. Simple drawdown, round nozzle, invasion
with supercharging, 200 psi overbalance. . . . 143
Example 3. Simple drawdown, round nozzle, invasion with
strong supercharging, 2,000 psi
overbalance . . . . . . . . . . . . . . . . . . . . . 147
Example 4. Simple drawdown, round nozzle, underbalanced
drilling, 100 psi underbalance . . . . . . . . . . 149
Example 5. Simple drawdown, slot nozzle, no
invasion . . . . . . . . . . . . . . . . . . . . . . . 151
Example 6. Simple drawdown, three pumping slot nozzles,
no invasion . . . . . . . . . . . . . . . . . . . . . 156
8.2 Highly Transient Applications, Drawdown and Buildup,
Multiple Round or Slot Nozzles, No Invasion . . . . . . . . 160
Example 7. Simple drawdown and buildup, single round
nozzle . . . . . . . . . . . . . . . . . . . . . . . . 160
Example 8. Three round nozzles executing drawdown and
buildup simultaneously and independently,
no invasion . . . . . . . . . . . . . . . . . . . . 165
Example 9. Two round nozzles, one withdrawing fluid, the
second simultaneously injecting, no
invasion . . . . . . . . . . . . . . . . . . . . . . 170
Example 10. Invasion or supercharge characterization
in transient problems. . . . . . . . . . . . . . . 174
8.3 Additional Topics . . . . . . . . . . . . . . . . . . . . . . . . . 178
Example 11. A complicated simulation, effect of pore pressure
in output displays. . . . . . . . . . . . . . . . . 178
Example 12. Batch processing capabilities. . . . . . . . . . 183
Example 13. Spherical flow evaluation and geometric
factors . . . . . . . . . . . . . . . . . . . . . . . 191
Example 14. Pressure behavior at permeability
extremes . . . . . . . . . . . . . . . . . . . . . . 194
Example 15. Comparing problems with and without
supercharge . . . . . . . . . . . . . . . . . . . . 197
9. Special Topics – Gas Release, Convergence Acceleration,
Big Data and Inverse Methods . . . . . . . . . . . . . . . . . . 200
9.1 Suppressing Dissolved Gas Release. . . . . . . . . . . . . . . 201
Bubble point considerations . . . . . . . . . . . . . . . . . . . 201
Example 1. Undesirable dissolved gas release . . . . . . . . 202
Example 2. Dissolved gas remains in solution . . . . . . . . 207
9.2 Steady Flow Convergence Acceleration for Interpretation
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Interpretation applications . . . . . . . . . . . . . . . . . . . 213
Validating convergence accelerations . . . . . . . . . . . . . 214
Big data inverse applications . . . . . . . . . . . . . . . . . . 219
9.3 Heterogeneity and Dip Detection Using Multiple Firings . . 219
9.4 Triple Probe Tools with Different Nozzle Geometries. . . . 225
9.5 Inverse Problems for Azimuthal and Axial Probe
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.5.1 Azimuthal inverse problem. . . . . . . . . . . . . . . . 229
Steady flow forward calculations . . . . . . . . . . . . 231
Limited (kh,kv) range example . . . . . . . . . . . . . 231
Inverse permeability predictions . . . . . . . . . . . . 241
Algorithm analysis . . . . . . . . . . . . . . . . . . . . . 241
Wider (kh,kv) permeability example . . . . . . . . . 247
Inverse method recapitulation . . . . . . . . . . . . . . 251
Data integrity in “big data” implementation . . . . . . 254
Azimuthal inverse strategies . . . . . . . . . . . . . . . 256
9.5.2 Axial inverse problem for any dip angle . . . . . . . . 257
9.5.2.1 Dual probe anisotropy inverse analysis. . . . 257
Existing source model simulators . . . . . . . 258
9.5.2.2 Supercharging – Effects of nonuniform initial
pressure . . . . . . . . . . . . . . . . . . . . . . 267
Conventional zero supercharge model . . . . 268
Supercharge “Fast Forward” solver . . . . . . 269
9.5.2.3 Multiprobe “DOI,” inverse and barrier
analysis . . . . . . . . . . . . . . . . . . . . . . 275
9.6 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.7 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
10. Integrated Multiprobe Modeling System . . . . . . . . . . 284
Section 1 – General transient 3D simulator . . . . . . . . . . 286
10.1 Overall Capabilities and Enhancements . . . . . . . . . . 286
10.2 The “Steady” Check-box Option for Low and High
Permeability Flows . . . . . . . . . . . . . . . . . . . . . . 291
10.3 Flows with Mixed Nozzle Designs and Different
Pumping Schedules . . . . . . . . . . . . . . . . . . . . . . 294
Run 1. All round nozzles with staggered flow rates . . 294
Run 2. All slotted nozzles with staggered flow rates . . 296
Run 3. All slotted nozzles with identical flow rates . . 297
Run 4. Slot, round, slot combination with identical
flow rates . . . . . . . . . . . . . . . . . . . . . . . 300
Run 5. Round, slot, round combination with identical
flow rates . . . . . . . . . . . . . . . . . . . . . . . 301
10.4 Geometric Factor Role in Model and Tool Calibration . 303
10.4.1 Model calibration . . . . . . . . . . . . . . . . . . 303
10.4.2 Tool and software calibration . . . . . . . . . . . 306
10.5 Pad Nozzles with Different Orifice Sizes and Shapes . . 307
10.6 Pore Pressure Determination with Triple Probe Tool
and Effects of Supercharge . . . . . . . . . . . . . . . . . . 309
vii
Section 2 – Steady Simulator and Inverse
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
10.7 Software Reference Overview . . . . . . . . . . . . . . . . 312
10.8 General Transient 3D Simulator in Batch Mode . . . . . 315
10.9 Rapid Steady 3D Simulator in Batch Mode . . . . . . . . 319
10.10 Big Data Inverse Approach and Examples. . . . . . . . . 333
10.10.1 Run 1. Center pumping probe, two
observation probes with a first viscosity guess . . . . . . 333
10.10.2 Run 2. Center pumping probe, two
observation probes with a second viscosity guess . . . . 348
10.10.3 Run 3. Three pumping probes in drawdown
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
10.10.4 Run 4. Two pumping probes in drawdown
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
10.11 Closing Remarks . . . . . . . . . . . . . . . . . . . . . . . . 361
Cumulative References . . . . . . . . . . . . . . . . . . . . . . . . . 362
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

Back to Top


BISAC SUBJECT HEADINGS
TEC047000 : TECHNOLOGY & ENGINEERING / Petroleum
SCI024000 : SCIENCE / Energy
BUS070040 : BUSINESS & ECONOMICS / Industries / Energy
 
BIC CODES
THF: Fossil fuel technologies
RBGK: Geochemistry
TDCB: Chemical engineering

Back to Top


Description
BISAC & BIC Codes
Author/Editor Details
Table of Contents
Bookmark this page