is a comprehensive book aimed at helping students, researchers, and policymakers develop a complete understanding of the vulnerabilities and solutions of the land system through the use of spatial information sciences and satellite remote sensing.
Table of ContentsAcknowledgements xix
1 Climate Change in South Asia: Impact, Adaptation
and The Role of GI Science 1
Anuj Kumar and Swami Prasad Saxena
Introduction 2
1.2 Climate Change 2
1.3 Climate Change Trends in South Asia 3
1.4 Climate Change Impact in South Asia 6
1.4.1 Climate Change Impact on Socio-Economy
in South Asia 6
1.4.2 Climate Change Impact on Agriculture
in South Asia 8
1.4.3 Impact of Climate Change in Water Resources
in South Asia 8
1.4.4 Impact of Climate Change on Sea Level 10
1.4.5 Impact of Climate Change on Human Health 11
1.5 Climate Change Adaptation in South Asia
and the Role of GI Science 13
1.6 Conclusion 15
References 15
2 Sustainable Land Resource Management Approach
and Technological Interventions – Role of GI Science 19
Sandeep K. Pandey, Ritambhara K. Upadhyay
Chintan Pathak and Chandra Shekhar Dwivedi
2.1 Introduction 20
2.2 Land Resource Availability in India 21
2.3 Problems Associated with Land Resources 25
2.4 Important Interventions 25
2.5 Role of GI Science in Land Resource Management 27
References 29
3 GI Science for Assessing the Urban Growth
and Sustainability in Agra City, India 33
Aruna Paarcha
Introduction 34
Database 36
Methodology 37
Study Area 39
Result and Discussion 40
Land Use and Land Cover Change
of Agra City, 2001-2020 41
Growth in Registered Vehicles and Implications
on the Sustainability 44
PM10 and Implications on the Sustainability 45
Municipal Solid Wastes and Implications
on the Sustainability 47
Way Forward for Building Sustainable, Resilient,
and Smart Agra City 48
Conclusion 49
References 49
4 The Use of GI Science in Detecting Anthropogenic Interaction
in Protected Areas: A Case of The Takamanda National Park,
South West Region, Cameroon 55
Takem-Mbi, B. M., Mbuh, J. M. and Lepatio-Tchieg, A. S.
4.1 Introduction 56
4.2 Context and Justification 57
4.3 Material and Data Sources 59
4.4 Results and Discussion 62
4.4.1 Agricultural Activities 62
4.4.2 Hunting 63
4.4.3 Livestock Rearing 65
4.4.3 The Exploitation of Wood in the TNP 67
4.4.4 Fishing Activities 68
4.4.5 Harvesting Non-Timber Forest Products (NTFPS) 70
4.5 Conclusion 72
References 76
5 Urban Heat Island Effect Concept and Its Assessment
Using Satellite-Based Remote Sensing Data 81
Zulaykha Khurshid Dijoo
5.1 Introduction 82
5.2 Classification of UHIs 84
5.2.1 Surface UHI 84
5.2.2 Atmospheric UHI 84
5.2.2.1 Canopy Layer UHI 84
5.2.2.2 Boundary Layer UHI 85
5.3 Chief Causes 85
5.3.1 Urbanisation 85
5.3.2 Urban Sprawl 86
5.3.3 Urban Geometry 87
5.3.4 Reduced Vegetation 87
5.3.5 Use of Engineered Materials 87
5.3.6 Changes in Energy Needs 88
5.3.7 Pavement Structure 88
5.4 Consequences of UHI Formation 88
5.5 Detection and Measurement Techniques 89
5.5.1 Thermal Remote Sensing 89
5.5.2 Small-Scale Models 89
5.5.3 Transect Studies 90
5.6 Mitigation Strategies 90
5.6.1 Enhancing Vegetative Cover 91
5.6.2 High Albedo Roofing Materials 91
5.6.3 High Albedo Pavements 91
5.6.4 Evaporative, Pourous and Water Retaining
Pavemenets 91
5.6.5 Urban Planning 92
5.6.6 Wind, Water and Atmospheric Conditions 92
5.7 Role of Remote Sensing and GIS in Assessing
UHI Effect 92
5.8 Conclusion 94
References 94
6 Remote Sensing For Snowpack Monitoring
And Its Implications 99
Divyesh Varade, Surendar Manickam and Gulab Singh
6.1 Introduction 99
6.2 Snowpack Characterization 100
6.2.1 Spectral Response of Snow 101
6.2.2 Dry/Wet Snow Characterization 102
6.2.3 Physical Properties of Snow 102
6.3 Remote Sensing of Alpine Snow 104
6.4 Techniques for the Qualitative and Quantitative
Analysis of Snow 105
6.4.1 Qualitative Studies of the Snowpack 105
6.4.2 Quantitative Retrieval of Snow Properties 107
6.4.2.1 Determination of Snowpack Properties 107
6.4.2.2 Retrieval of Snow Depth and SWE 110
Conclusion 112
References 113
7 Spectral Ratioing: A Computational Model for Quick
Information Retrieval of Earth’s Surface Dynamics 119
Ekta Baranwal and Shamshad Ahmad
7.1 Introduction 120
7.2 Image Enhancement Techniques for Remotely
Sensed Images and Their Categorization 123
7.2.1 Radiometric Enhancement 126
7.2.2 Spatial Enhancement 127
7.2.3 Spectral Enhancement 128
7.2.4 Additional Methods of Image Enchancement 129
7.3 Spectral Ratioing 130
7.3.1 The General Methodology for Implementing
Spectral Ratios 132
7.4 Spectral Ratio for Urban Extraction and Mapping 132
7.4.1 Some Spectral Index for Urban Extraction 134
7.5 Spatiotemporal Change in Urban Pattern Through
Spectral Ratio 137
7.6 Conclusion 140
References 141
8 Delineation of Surface Water in Mining Dominated
Region of Angul District of Odisha State, India
Using Sentinel-2A Satellite Data 147
A. K. Gorai, Rahul Raj and A. K. Ranjan
8.1 Introduction 148
8.2 Study Area 149
8.3 Materials and Method 149
8.3.1 Data 149
8.3.2 Methods 150
8.3.2.1 Satellite Data Acquisition 151
8.3.2.2 Identification of Water-Bearing Pixels 152
8.3.2.3 Change Detection Analysis 152
8.4 Results and Discussion 152
8.5 Conclusions 156
Acknowledgements 157
Conflicts of Interest 157
References 157
9 Mapping Seasonal Variability and Spatio-Temporal
Trends of Water Quality Parameters in Wular Lake
(Kashmir Valley) 163
Tariq Ahmad Ganaie, Javaid Ahmad Tali, Mifta ul Shafiq,
Harmeet Singh and Pervez Ahmed
9.1 Introduction 164
9.2 Study Area 166
9.3 Datasets and Methodology 166
9.3.1 Datasets 166
9.4 Methodology 169
9.4.1 Inverse Distance-Weighted Interpolation (IDW) 169
9.5 Mapping Spatial Variations in Water Quality Parameters
(WQP’S) Using IDW Method in Wular Lake 170
9.5.1 Seasonal and Spatial Variability of WQPS
in Wular Lake 170
9.6 Results and Discussion 170
9.6.1 Water Temperature (WT) 170
9.6.2 pH 177
9.6.3 Turbidity 177
9.6.4 Total Dissolved Solids (TDS) 177
9.6.5 Electrical Conductivity (EC) 178
9.6.6 Dissolved Oxygen (DO) 178
9.6.7 Calcium (Ca2+) 179
9.6.8 Magnesium (Mg2+) 180
9.6.9 Total Hardness (TH) 180
9.6.10 Total Alkalinity 182
9.6.11 Nitrates (NO3-) 182
9.6.12 Total Phosphate 183
9.7 Temporal Variations in Water Quality Parameters
of Wular Lake (1992-2015) 183
9.8 Conclusion 185
Acknowledgement 187
References 187
10 Water Quality Zoning Using GIS & Remote Sensing:
A Case Study of Tehsil Matta District Swat Pakistan 195
Abid Sarwar, Uzair Ahmed, Fazli Amin Khalil,
Shazia Gulzar and Nadia Qayum
10.1 Introduction 196
10.2 Martials and Methods 197
10.2.1 Study Area 197
10.2.2 Methodology 197
10.3 Results and Discussion 199
10.3.1 Ph 199
10.3.2 Dissolved Oxygen 200
10.3.3 Electrical Conductivity 201
10.3.4 Salinity 201
10.3.5 Chemical Parameters 204
10.3.6 Alkalinity 204
10.3.7 Total Dissolved Solids 205
10.3.8 Chloride 205
10.3.9 Sulphate 206
10.3.10 Biological Oxygen Demand 206
10.3.11 Final Water Quality Zones Map 208
10.4 Conclusion 209
References 209
11 Assessing The Impacts Of Global Sea Level Rise (SLR)
On The Mangrove Forests Of Indian Sundarbans
Using Geospatial Technology 213
Ismail Mondal, Sandeep Thakur, Phanibhusan Ghosh
and Tarun Kumar De
11.1 Introduction 214
11.2 Materials and Methods 215
11.2.1 Data Methodology 215
11.2.2 Location and General Boundaries 215
11.3 Results and Discussions 217
11.3.1 Sundarban Sea Level Rise Scenario 217
11.3.2 Salinity Increase and Effect
on Mangrove Forest 218
11.3.3 Mangrove Degradation of Sundarban 221
11.4 Conclusion and Restoration of the Delta 223
11.4.1 Mangrove Resilience Factors That Inform
Site Selection of Sundarban 225
11.4.2 Various Factors That Would Allow
for the Landward Migration 225
11.4.3 Various Issues That Highlighted Survival
Over Time 226
11.4.4 Various Factors That Highlighted Strong
Retrieval Potential 226
11.5 Acknowledgements 227
References 227
12 Sustainable Water Resource Management Using Watershed
Morphometry– A Case Study of Giri River Catchment,
Himachal Pradesh, India 233
C. Prakasam, Aravinth, R., Varinder S Kanwar
and B. Nagarajan
12.1 Introduction 234
12.2 Study Area 236
12.3 Datasets and Research Method 237
12.4 Results and Discussion 239
12.4.1 Morphometry of Linear Parameters 239
12.4.2 Morphometry of Relief Parameters 244
12.4.3 Morphometry of Aerial Parameters 246
12.5 Conclusion 251
References 251
13 Improving The Procedure for River Flow Measurement
and Mapping: Case Study River Plitvica, Croatia 255
Bojan Đurin, Lucija Plantak, Nikola Kranjčić, Petra Bigor
and Damira Keček
13.1 Introduction 256
13.2 Study Area 256
13.3 Data Sets and Methodology 256
13.3.1 Data Sets 256
13.4 Methodology 259
13.5 Results And Discussion 261
13.6 Conclusion 263
Acknowledgement 264
References 264
14 Spatiotemporal Analysis of Forest Degradation in South
Chotanagpur Divison of India 265
Jyotsna Roseline Ekka, Debjani Roy and Kirti Avishek
14.1 Introduction 266
14.2 Forest Cover Dynamics In Study Area 268
14.3 District-Wise Forest and Population Dynamics 269
14.4 NDVI Analysis 276
14.5 Driving Forces of Forest Cover Change 277
14.6 Conclusion 281
References 281
15 Forest Fire Risk Assessment Using GIS Science – A Case
Study of South India 287
G. Godson, O. Mohammed Faizan and S. Sanjeevi
15.1 Introduction 288
15.2 Study Area 290
15.3 Datasets Used 290
15.4 Factors Responsible for Forest Fire over the Study Area 290
15.4.1 Vegetation Type and Tree Species 290
15.4.2 Climate 291
15.4.3 Topography 291
15.4.4 Road Networks 291
15.5 Methodology 292
15.6 Parameters Incorporated in the Study 292
15.7 Weighted Overlay Analysis in ARCGIS 294
15.7.1 Selecting an Evaluation Scale 294
15.7.2 Adding the Input Raster 294
15.7.3 Setting Scale Values 294
15.7.4 Assigning Weights to Input Raster 295
15.7.5 Finally Running the Weighted Overlay Tool
in ArcGIS 295
15.8 NDVI 295
15.9 Results and Discussion 297
References 301
16 GI Science for Land Use Suitability Analysis in the
Himalayas – A Case Study of Himachal Pradesh, India 305
C. Prakasam, Saravanan R, Varinder S Kanwar, M.K. Sharma
and Monika Sharma
16.1 Introduction 306
16.2 Study Area 308
16.3 Materials and Methods 308
16.4 Results and Discussion 313
16.5 Conclusion 317
Acknowledgment 317
References 318
17 Using Remote Sensing Data and Geospatial Techniques
for Watershed Delineation and Morphometric Analysis
of Beas Upper Catchment, India 323
Monika, Yogender Kumar, Sagar S. Salunkhe,
Mehtab Singh and H.Govil
17.1 Introduction 324
17.2 Study Area 324
17.3 Methodology 326
17.4 Result and Discussion 327
17.4.1 Watershed Delineation and Boundary Comparison 328
17.4.2 Slope Comparison 329
17.4.3 Aspect Comparison 330
17.4.4 Morphometric Parameters 330
17.4.4.1 Linear Aspect 331
17.4.4.2 Stream Number (Nu) 331
17.4.4.3 Stream Order (U) 331
17.4.4.4 Aerial Aspects 333
17.4.4.5 Relief Aspects 335
17.5 Conclusions 336
Acknowledgement 337
References 337
18 Sub-Watershed Prioritization for Soil and Water
Conservation – A Case Study of Lower Wardha River,
Maharashtra, India, Using GI Science 341
B.S. Manjare and Vineesha Singh
18.1 Introduction 342
18.2 Study Area 344
18.3 Data and Method 344
18.3.1 Data Set 344
18.3.2 Methodology 345
18.4 Morphometry of Lower Wardha 346
18.5 Results and Discussion 346
18.5.1 Slope Analysis 349
18.5.2 Prioritization of Sub-Watersheds 354
18.5.2.1 Based on Morphometric Analysis 354
18.5.2.2 Prioritization Methodology 356
18.6 Conclusions 357
References 358
19 Understanding Hydrologic Response Using Basin
Morphometry in Pohru Watershed, NW Himalaya 363
Abaas Ahmad Mir, Pervez Ahmed and Umair Ali
19.1 Introduction 364
19.2 Study Area 365
19.2.1 Geology and Geomorphology 365
19.3 Materials and Method 367
19.4 Results and Discussion 368
19.4.1 Drainage System 368
19.4.2 Morphometric Analysis 369
19.5 Conclusion 372
References 372
20 Sintacs Method for Assessment of Groundwater
Vulnerability: A Case of Ahmedabad, India 377
Mona Khakhar, Jayesh P. Ruparelia and Anjana Vyas
20.1 Introduction 378
20.2 Background 380
20.3 Study Area 382
20.4 Data Sets and Methodology 383
20.4.1 Data Sets 383
20.4.2 Methodology 383
20.5 Results and Discussion 388
20.5.1 Depth to Water Table 388
20.5.2 Effective Infiltration/Net Recharge 388
20.5.3 Aquifer Media 389
20.5.4 Soil Media 390
20.5.5 Topographic Slope 390
20.5.6 Vadose Zone 390
20.5.7 Hydraulic Conductivity 391
20.5.8 Derivation of Vulnerability Index 391
20.5.9 Appropriate Method for the Study Area 392
20.5.10 Temporal Changes in Intrinsic Vulnerability 394
20.5.11 State of Contaminants and Land Use 395
20.5.12 Land Use and Groundwater Vulnerability 400
20.6 Conclusion 405
References 406
Index 000
Back to Top