This is the only volume of its kind to explain, in precise and easy-to-understand language, the fundamentals of tensors and their applications in differential geometry and analytical mechanics with examples for practical applications and questions for use in a course setting.
Table of ContentsPreface xv
About the Book xvii
Introduction 1
Part I: Tensor Theory 7
1 Preliminaries 9
1.1 Introduction 9
1.2 Systems of Different Orders 9
1.3 Summation Convention Certain Index 10
1.3.1 Dummy Index 11
1.3.2 Free Index 11
1.4 Kronecker Symbols 11
1.5 Linear Equations 14
1.6 Results on Matrices and Determinants of Systems 15
1.7 Differentiation of a Determinant 18
1.8 Examples 19
1.9 Exercises 23
2 Tensor Algebra 25
2.1 Introduction 25
2.2 Scope of Tensor Analysis 25
2.2.1 N-Dimensional Space 26
2.3 Transformation of Coordinates in Sn 27
2.3.1 Properties of Admissible Transformation
of Coordinates 30
2.4 Transformation by Invariance 31
2.5 Transformation by Covariant Tensor
and Contravariant Tensor 32
2.6 The Tensor Concept: Contravariant and Covariant Tensors 34
2.6.1 Covariant Tensors 34
2.6.2 Contravariant Vectors 35
2.6.3 Tensor of Higher Order 40
2.6.3.1 Contravariant Tensors of Order Two 40
2.6.3.2 Covariant Tensor of Order Two 42
2.6.3.3 Mixed Tensors of Order Two 42
2.7 Algebra of Tensors 43
2.7.1 Equality of Two Tensors of Same Type 45
2.8 Symmetric and Skew-Symmetric Tensors 46
2.8.1 Symmetric Tensors 46
2.8.2 Skew-Symmetric Tensors 46
2.9 Outer Multiplication and Contraction 51
2.9.1 Outer Multiplication 51
2.9.2 Contraction of a Tensor 53
2.9.3 Inner Product of Two Tensors 54
2.10 Quotient Law of Tensors 56
2.11 Reciprocal Tensor of a Tensor 58
2.12 Relative Tensor, Cartesian Tensor, Affine Tensor,
and Isotropic Tensors 60
2.12.1 Relative Tensors 60
2.12.2 Cartesian Tensors 63
2.12.3 Affine Tensors 63
2.12.4 Isotropic Tensor 64
2.12.5 Pseudo-Tensors 64
2.13 Examples 65
2.14 Exercise 71
3 Riemannian Metric 73
3.1 Introduction 73
3.2 The Metric Tensor 74
3.3 Conjugate Tensor 75
3.4 Associated Tensors 77
3.5 Length of a Vector 84
3.5.1 Length of Vector 84
3.5.2 Unit Vector 85
3.5.3 Null Vector 86
3.6 Angle Between Two Vectors 86
3.6.1 Orthogonality of Two Vectors 87
3.7 Hypersurface 88
3.8 Angle Between Two Coordinate Hypersurfaces 89
3.9 Exercises 95
4 Tensor Calculus 97
4.1 Introduction 97
4.2 Christoffel Symbols 97
4.2.1 Properties of Christoffel Symbols 98
4.3 Transformation of Christoffel Symbols 110
4.3.1 Law of Transformation of Christoffel Symbols
of 1st Kind 110
4.3.2 Law of Transformation of Christoffel Symbols
of 2nd Kind 111
4.4 Covariant Differentiation of Tensor 113
4.4.1 Covariant Derivative of Covariant Tensor 114
4.4.2 Covariant Derivative of Contravariant Tensor 115
4.4.3 Covariant Derivative of Tensors of Type (0,2) 116
4.4.4 Covariant Derivative of Tensors of Type (2,0) 118
4.4.5 Covariant Derivative of Mixed Tensor
of Type (s, r) 120
4.4.6 Covariant Derivatives of Fundamental Tensors
and the Kronecker Delta 120
4.4.7 Formulas for Covariant Differentiation 122
4.4.8 Covariant Differentiation of Relative Tensors 123
4.5 Gradient, Divergence, and Curl 129
4.5.1 Gradient 129
4.5.2 Divergence 130
4.5.2.1 Divergence of a Mixed Tensor (1,1) 132
4.5.3 Laplacian of an Invariant 136
4.5.4 Curl of a Covariant Vector 137
4.6 Exercise 141
5 Riemannian Geometry 143
5.1 Introduction 143
5.2 Riemannian-Christoffel Tensors 143
5.3 Properties of Riemann-Christoffel Tensors 150
Theorem 5.3.1 153
Theorem 5.3.2 155
5.3.1 Space of Constant Curvature 157
5.4 Ricci Tensor, Bianchi Identities, Einstein Tensors 158
5.4.1 Ricci Tensor 158
5.4.2 Bianchi Identity 159
5.4.3 Einstein Tensor 165
5.5 Einstein Space 169
5.6 Riemannian and Euclidean Spaces 170
5.6.1 Riemannian Spaces 170
5.6.2 Euclidean Spaces 173
5.7 Exercise 174
6 The E-Systems and Generalized Kronecker Deltas 177
6.1 Introduction 177
6.2 E-Systems 177
Property 6.2.1 E-Systems of Second Order 180
6.3. Generalized Kronecker Delta 181
6.4. Contraction of
ijk 183
6.5 Application of E-Systems to Determinants and Tensor
Characters of Generalized Kronecker Deltas 185
Property 6.5.1 187
Product of Two Determinant 187
Property 6.5.2 187
Partial Derivative of a Determinant 187
Property 6.5.3 188
6.5.1 Curl of Covariant Vector 189
6.5.2 Vector Product of Two Covariant Vectors 190
6.6 Exercise 192
Part II: Differential Geometry 193
7 Curvilinear Coordinates in Space 195
7.1 Introduction 195
7.2 Length of Arc 195
7.3 Curvilinear Coordinates in E3 200
7.3.1 Coordinate Surfaces 201
7.3.2 Coordinate Curves 202
Example 7.3.1 202
Example 7.3.2 204
7.3.3 Line Element 205
7.3.4 Length of a Vector 206
7.3.5 Angle Between Two Vectors 207
7.4 Reciprocal Base Systems 210
7.5 Partial Derivative 215
7.6 Exercise 219
8 Curves in Space 221
8.1 Introduction 221
8.2 Intrinsic Differentiation 221
8.3 Parallel Vector Fields 226
8.4 Geometry of Space Curves 228
8.4.1 Plane 231
8.5 Serret-Frenet Formula 233
8.5.1 Bertrand Curves 235
8.6 Equations of a Straight Line 252
8.7 Helix 254
8.7.1 Cylindrical Helix 256
8.7.2 Circular Helix 258
8.8 Exercise 261
9 Intrinsic Geometry of Surfaces 265
9.1 Introduction 265
9.2 Curvilinear Coordinates on a Surface 265
9.3 Intrinsic Geometry: First Fundamental Quadratic Form 267
9.3.1 Contravariant Metric Tensor 270
9.4 Angle Between Two Intersecting Curves on a Surface 272
9.4.1 Pictorial Interpretation 274
9.5 Geodesic in Rn 277
9.6 Geodesic Coordinates 289
9.7 Parallel Vectors on a Surface 291
9.8 Isometric Surface 292
9.8.1 Developable 293
9.9 The Riemannian–Christoffel Tensor and Gaussian
Curvature 294
9.9.1 Einstein Curvature 296
9.10 The Geodesic Curvature 308
9.11 Exercises 319
10 Surfaces in Space 321
10.1 Introduction 321
10.2 The Tangent Vector 321
10.3 The Normal Line to the Surface 324
10.4 Tensor Derivatives 329
10.5 Second Fundamental Form of a Surface 332
10.5.1 Equivalence of Definition of Tensor bαβ 333
10.6 The Integrability Condition 334
10.7 Formulas of Weingarten 337
10.7.1 Third Fundamental Form 338
10.8 Equations of Gauss and Codazzi 339
10.9 Mean and Total Curvatures of a Surface 341
10.10 Exercises 347
11 Curves on a Surface 349
11.1 Introduction 349
11.2 Curve on a Surface: Theorem of Meusnier 350
11.2.1 Theorem of Meusnier 353
11.3 The Principal Curvatures of a Surface 358
11.3.1 Umbillic Point 360
11.3.2 Lines of Curvature 361
11.3.3 Asymptotic Lines 362
11.4 Rodrigues Formula 376
11.5 Exercises 379
12 Curvature of Surface 381
12.1 Introduction 381
12.2 Surface of Positive and Negative Curvatures 381
12.3 Parallel Surfaces 383
12.3.1 Computation of a and b 383
12.4 The Gauss-Bonnet Theorem 387
12.5 The n-Dimensional Manifolds 391
12.6 Hypersurfaces 394
12.7 Exercises 395
Part III: Analytical Mechanics 397
13 Classical Mechanics 399
13.1 Introduction 399
13.2 Newtonian Laws of Motion 399
13.3 Equations of Motion of Particles 401
13.4 Conservative Force Field 403
13.5 Lagrangean Equations of Motion 405
13.6 Applications of Lagrangean Equations 411
13.7 Himilton’s Principle 423
13.8 Principle of Least Action 427
13.9 Generalized Coordinates 430
13.10 Lagrangean Equations in Generalized Coordinates 432
13.11 Divergence Theorem, Green’s Theorem, Laplacian
Operator, and Stoke’s Theorem in Tensor Notation 438
13.12 Hamilton’s Canonical Equations 441
13.12.1 Generalized Momenta 443
13.13 Exercises 444
14 Newtonian Law of Gravitations 447
14.1 Introduction 447
14.2 Newtonian Laws of Gravitation 447
14.3 Theorem of Gauss 451
14.4 Poisson’s Equation 453
14.5 Solution of Poisson’s Equation 454
14.6 The Problem of Two Bodies 456
14.7 The Problem of Three Bodies 462
14.8 Exercises 466
Appendix: Answers to Even Number Exercises 469
References 473
Index 475
Back to Top