Tackling one of the hottest topics in renewables, thin-film photovoltaics, the authors present the latest updates, technologies, and applications, offering the most up-to-date and thorough coverage available to the engineer, scientist, or student.
Table of ContentsPreface xi
Part I General and Thin Film PV 1
I. Introduction To Thin Film PV 1
A. The Origin of PV. Junctions 1
B. Fundamental Material Requirements 3
C. Charge Transport. Definition of Thin Film PV 4
D. Distinctive Features of Thin Film PV 7
Part II One-Dimensional (1D) Diodes and PV 13
II. 1D Diode 13
A. Metal-Insulator-Metal Diode 13
B. Schottky, Reach-Through, and
Field-Compensation Diodes 19
1. Schottky Diode 19
2. Reach Through Diodes 21
3. Field Compensation Diode 23
C. P-N Homo-Junctions 24
D. Heterojunctions 26
E. Other Relevant Types of Diodes 28
F. Field Reversal Diode: A Counterintuitive Case 29
G. Cat’s Whisker Diode 30
III. 1D Solar Cell 32
A. 1D Solar Cell Base Model 32
B. Numerical Modeling of 1D PV 39
1. Governing Equations 39
2. Device Model Parameters 40
3. Some Modeling Results 42
IV. Photovoltaic Parameters 43
A. Second-Level Parameters 44
B. Practical Solar Cells and Third-Level Metrics 46
C. Indicative Facts 49
D. Phenomenological Interpretation. Ideal
Diode with Other Circuitry Elements 52
V. Case Study 54
A. Field Reversal PV 54
1. Analytical Approach 55
2. Numerical Modeling of the Field
Reversal Device Operations 60
B. Miraculous Back Contact 68
Part III Beyond 1D: Lateral Effects in Thin Film PV 79
VI. Examples of Multidimensional Numerical Modeling 79
VII. Introduction to Random Multidimensional
Phenomena 81
VIII. Lateral Screening Length 84
A. Shunt Screening 84
B. Bias Screening 85
C. Quantitative Approach and Linear
Screening Regime 88
IX. Schottky Barrier Nonuniformities 91
X. Semi-Shunts 93
XI. Random Diodes 96
A. Weak Diodes 96
B. Random Diode Arrays in Solar Cells 99
C. Random Diode Arrays in PV Modules
and Fields 106
XII. Nonuniformity Observations 109
A. Cell Level Observations 109
B. Module Level Observations 118
XIII. Nonuniformity Treatment 121
Part IV Electronic Processes in Materials of Thin Film PV 131
XIV. Morphology, Fluctuations, and the Density of States 132
A. The Materials of Thin Film PV
are Fundamentally Different 132
B. Noncrystalline Morphology 134
C. Long Range Fluctuations of Potential Energy 136
D. Random Potential in Very Thin Structures 139
E. Numerical Estimates and Implications 142
XV. Electronic Transport 144
A. Band Transport in Random Potential 144
B. Hopping Transport Through Thin
Noncrystalline Films 147
1. Hopping Between Ideal Electrodes 149
2. Hopping Between Resistive Electrodes 151
3. Critical Area and Mesoscopic Fluctuations 153
XVI. Recombination in Quasi-Continuous Spectrum 155
XVII. Noncrystalline Junctions 161
XVIII. Piezo and Pyro-PV 164
A. The Nature of Piezo-PV 164
B. Piezo-PV Observations 169
C. The Significance of Piezo-PV 171
References 174
Part V Electro-Thermal Instabilities in Thin Film PV 181
XIX. The Two-Diode Model 182
A. Linear stability Analysis 183
B. The Two-Diode Modeling: Numerical
Estimates and Scaling 184
XX. Distributed Diode Model A 186
A. Introduction 186
B. Linear Stability Analysis 187
XXI. Simplistic Numerical Modeling 188
XXII. Spontaneous Hot Spots A 190
A. Introduction 190
B. Observations 191
C. Numerical Modeling 195
1. Electrical Model 195
2. Thermal Model 199
D. Modeling Results 200
E. Approximate Analytical Model 205
XXIII. Related Work 207
XXIV. Conclusions on the Electro-Thermal
Instabilities in Thin Film PV 209
Part VI Degradation of Thin Film PV 213
XXV. Thin Film vs Crystalline PV Degradation
Processes 213
XXVI. Observations 215
A. Cell Degradation 216
B. Module Degradation 222
XXVII. Categories of Degradation 225
A. General Categories 225
B. Thin-Film PV Instabilities 227
1. Shunting Instability 227
2. Contact Delamination Instability 229
XXVIII. Accelerated Life Testing 231
A. Examples of Very Strong ALT: HALT 232
1. EBIC ALT 232
2. LBIC ALT 234
B. Actuarial Approach to ALT 235
Back to Top