This latest volume in the series, “Advances in Biofeedstocks and Biofuels,” offers the most up-to-date and comprehensive coverage available for the production technologies for solid and gaseous biofuels
Table of ContentsPreface xv
1 Biogas, Biomethane and BioCNG: Definitions, Technologies
and Solutions 1
Alessandra Lee Barbosa Firmo, Fabrícia Maria Santana Silva,
Ingrid Roberta de F.S. Alves, Ericka Patrícia Lima de Brito and
Leandro Cesar Santos da Silva
1.1 Definitions and Sources of Production of Biogas,
Biomethane and BioCNG 2
1.2 Production Chains, Utilization and Valorization of Biogas 5
1.2.1 Anaerobic Digesters 8
1.2.1.1 Techniques for Optimization of Anaerobic
Digestion 13
1.2.1.2 Biogas recovery plants 14
1.2.1.3 Biofertilizers – Material Valorization 15
1.2.2 Landfills: Final Disposal and Biogasvalorization 16
1.3 Uses of Biomethane: Practice Examples 20
1.4 Challenges and Opportunities 21
References 25
2 Biomethanisation: Biogas Production Technologies 33
Gabor Z. Szelenyi
2.1 Relevance 34
2.2 Oxidation without Oxygen – Anaerobic Biodegradation
of the Organic Matter 35
2.3 Bifurcating Metabolic Pathways 35
2.4 Methanogenesis 36
2.5 Imitation of Nature – Improvement through Controlled
Environment 40
2.6 Operational Challenges 44
2.7 Post-Treatment 47
2.8 Outlook – Fields of Further Research and Technological
Development 49
2.9 Conclusion – Development Goals 55
Acknowledgments 60
References 60
3 Effect of Process Parameters on Biogas Yield: A Systematic Review 65
H.O. Omoregbee, M. O. Okwu, L.K. Tartibu, A.E. Ivbanikaro,
M.U. Olanipekun and A.B. Edward
3.1 Introduction 66
3.2 Effect of Process Parameters on Biogas Yield 67
3.2.1 Temperature Effect on Biogas Yield 67
3.2.2 Effect of pH on Biogas Yield 69
3.2.3 Effect of Hydraulic Retention Time (HRT) on
Biogas Yield 70
3.2.4 Effect of Agitation or Stirring on Biogas Yield 71
3.3 Pre-Treatment Process 72
3.3.1 Mechanical Treatment 73
3.3.2 Microwave Irradiation 73
3.3.3 Thermal Pre-Treatment Process 73
3.3.4 Chemical Treatment 74
3.3.4.1 Acid 74
3.3.4.2 Alkali 74
3.3.5 Biological Treatment 75
3.3.6 Biochemical Methane Potential 76
3.4 Effect of Co-Digestion of Two or More Substrates 76
3.5 Effect of Total Solid ContenT (TSC) 78
3.5.1 Acidogenesis 79
3.5.2 Hydrolysis 79
3.5.3 Methanogenesis 80
3.5.4 Acetogenesis 80
3.6 Addressing AD Bottlenecks caused by the Physicochemical
Properties of Substrate 80
3.6.1 Carbon Dioxide Removal Technologies for
Upgrading Biogas 81
3.7 Conclusion 83
References 84
4 Biogas for Electricity Generation in Nigeria: A Systematic
Review of the Prospects, Efforts and Contemporary Challenges 91
Victor M Mbachu, Modestus O Okwu, Celine C. Chiabuotu
and Lagouge K. Tartibu
4.1 Introduction 92
4.2 Bioenergy and Biogas Technology 93
4.3 Chronicle of Research Efforts in Biogas Technology 94
4.3.1 Assessment of Biomass Potential for Biogas and
Electricity Generation 94
4.3.2 Use of Co-digestion for enhanced production 95
4.3.3 Enhancement of Biogas Production Using
Pre-Treatment of Feedstock 96
4.3.4 Inoculation of Substrate for Biogas Production 96
4.3.5 Optimization of Biogas Production Process
Parameters 97
4.3.6 Digester Design 97
4.3.7 Upgrading and Purification of Biogas 98
4.3.8 Modeling of Biogas Production 99
4.4 Current Research and Developmental Trend in Biogas
Technology 100
4.5 Conclusion 101
References 101
5 Biohydrogen Production Technologies: Current Status,
Challenges, and Future Perspectives 115
Akanksha Jain, Eeshita Das, Venkata Giridhar Poosarla
and Gobinath Rajagopalan
5.1 Introduction 116
5.2 Hydrogen vs. Biohydrogen 116
5.3 Biohydrogen from Light Dependent Processes 119
5.3.1 Photo-Fermentation (PF) 119
5.3.1.1 Biocatalysts Involved in PF 120
5.3.1.2 General Mechanism of Biohydrogen
Production from PF 123
5.3.1.3 Current Status of PF 124
5.3.1.4 Major Factors that Influence the PF Process 124
5.3.1.5 Challenges Reported 134
5.3.2 Biophotolysis (BP) 134
5.3.2.1 General Mechanism of Hydrogen
Production from Biophotolysis 136
5.3.2.2 Current Status of BP 136
5.3.2.3 Major Factors Influence BP 137
5.3.2.4 Challenges Reported 141
5.4 Biohydrogen Production from Dark Fermentation 141
5.4.1 Dark Fermentation (DF) 141
5.4.2 Biocatalysts Involved in DF 143
5.4.2.1 Formate Lyase Complex 144
5.4.3 General Mechanism and Biochemistry of
Biohydrogen Production from DF 144
5.4.3.1 Clostridia 144
5.4.3.2 Non-Clostridia 146
5.4.4 Current Status 146
5.4.4.1 Feedstock 146
5.4.4.2 Process Design 148
5.4.4.3 Factors Influencing DF 150
5.4.4.4 DF by Mixed Consortia 152
5.4.4.5 Biohydrogen Production by
Using Pure Culture 154
5.4.5 Challenges Reported 154
5.5 Other Methods of Biohydrogen Production 154
5.5.1 Bioelectrolysis 154
5.6 Future Perspectives of Biohydrogen Production 157
Acknowledgment 158
References 158
6 Biomass Gasification, Some Theory, and Practical Examples 169
Eduardo C. M. Loureiro, Isabella A. Garrett,
Clériston Vieira Junior and Sérgio Peres
6.1 Introduction 170
6.2 Fixed-Bed Reactors 171
6.3 Fluidized-Bed Reactors 173
6.4 Biomass Characterization 175
6.5 Production of Syngas from Wood in A Downdraft
Fixed Bed 176
6.5.1 Methodology 176
6.5.2 Results 183
6.6 Construction and Hydrodynamic Characterization of a
Bubbling Fluidized-Bed Gasifier 184
6.6.1 Introduction 184
6.6.2 Methodology 185
6.6.2.1 Bed Characterization 185
6.6.2.2 Cold Flow Model – CFM 186
6.6.2.3 Experimental Vmf 187
6.6.2.4 Theoretical Vmf 189
6.6.3 Results and Discussions 190
6.6.3.1 Velocity of Minimal Fluidization - Vmf 191
6.6.3.2 Gasifier Construction 200
6.6.3.3 Gasification Experiments 201
References 204
7 Experimental Investigation on Producer Gas Generation
Through Briquettes Using Agricultural Wastes 207
Senthil Ramlingam, Balamurugan Rajendiran,Thendral T.
and Sudagar S.
7.1 Introduction 208
7.2 Materials for Present Work 210
7.2.1 Feedstock 210
7.2.1.1 Sesame Plant 210
7.2.1.2 Maize Cob (MC) 211
7.2.2 Binder Material 211
7.2.3 Briquette Preparation 212
7.2.4 Physical Properties of Briquette 213
7.2.4.1 Proximate Analysis 213
7.2.4.2 Bulk Density 215
7.2.5 Ultimate Analysis 215
7.2.6 Calorific Value of Feedstock 215
7.2.7 Mechanical Properties of Briquette 216
7.2.7.1 Compressive Strength 216
7.2.7.2 Shatter Index 216
7.3 Result and Discussion 216
7.3.1 Proximate Analysis 217
7.3.1.1 Ash 217
7.3.1.2 Moisture 217
7.3.1.3 Fixed Carbon 217
7.3.1.4 Volatile Matter 218
7.3.2 Ultimate Analysis 218
7.3.3 Density 219
7.3.4 Compressive Strength of Briquette 219
7.3.5 Calorific Value 220
7.3.6 Comparative Analysis of Properties 221
7.4 Generation of Producer Gas 222
7.4.1 Effect of Temperature on Producer Gas 223
7.5 Producer Gas Suitability in Engines 224
7.6 Conclusion 224
References 225
8 Biomass Gasification for Distributed Generation and Biochar
Production: An Application to the Olive Oil Supply Chain 229
Roque Aguado, Antonio Escámez, David Vera,
Dolores Eliche-Quesada and Luis Pérez-Villarejo
8.1 Introduction 230
8.1.1 By-Products of the Olive Oil Industry 230
8.1.2 Gasification for Distributed Generation 232
8.1.3 Gasification for Biochar Production 236
8.2 Methodology 237
8.2.1 Description of the Experimental Gasification Plant 237
8.2.2 Physicochemical Properties of the By-Products
from the Olive Oil Industry 239
8.2.3 Experimental Procedure 243
8.2.4 Biochar Physicochemical Characterization 245
8.3 Results 245
8.3.1 Assembly and Installation of the Gasification Plant 245
8.3.2 Experimental Results 246
8.3.3 Biochar Characterization and Potential for the Olive
Oil Industry 250
8.4 Economic Impact of Gasification in the Olive Oil Industry 252
8.5 Conclusions 256
Acknowledgements 257
References 258
9 Conversion of Agro Wastes to Solid and Gaseous Biofuels
through Thermal Cracking Technique 263
Senthil Ramlingam, Sudagar Subramanian and
Pranesh Ganesan
9.1 Introduction 264
9.1.2 Energy Resources 264
9.2 Biomass 266
9.3 Biomass Energy Conversion Technologies 267
9.3.1 Thermal Cracking Process 268
9.3.1.1 Gasification 268
9.3.1.2 Pyrolysis Process 268
9.4 Types of Pyrolysis Process 269
9.4.1 Conventional or Slow Pyrolysis 269
9.4.2 Fast Pyrolysis 270
9.4.3 Flash Pyrolysis 270
9.5 Mechanism involved during Pyrolysis 270
9.5.1 Mechanism in Hemicelluloses 270
9.5.2 Mechanism in Cellulose 272
9.5.3 Mechanism in Lignin 272
9.6 Pyrolysis Products 272
9.6.1 Bio-oil 273
9.6.2 Residue 273
9.6.3 Syngas 274
9.7 Present Investigation 274
9.7.1 Materials and Methods 275
9.7.1.1 Cashew Nut Shell 275
9.7.1.2 Sawdust 275
9.7.1.3 Sugarcane Bagasse 276
9.7.1.4 Binder 277
9.7.2 Preparation of Briquetting 277
9.7.3 Sources for Briquetting 278
9.8 Methodology 278
9.8.1 Bio-oil Extraction Process 281
9.9 Result and Discussion 281
9.9.1 Analysis of Briquette 281
9.9.2 Thermo Gravimetric Analysis 282
9.9.3 Products of Pyrolysis Process 283
9.9.4 Fuel Properties 284
9.9.4.1 FTIR 284
9.9.4.2 Biochar and Syngas Analysis 285
9.9.4.3 Biochar 285
9.9.4.4 Syngas 286
9.10 Conclusion 286
References 287
10 Insights Into the Production of Biochar from Organic Waste 291
Jaskiran Kaur
10.1 Introduction 291
10.2 Organic Waste as Feedstocks for Biochar Production 293
10.3 Thermochemical Conversion of Organic Waste into
Biochar 294
10.4 Factors affecting biochar yield and properties 296
10.4.1 Feedstock Type and Composition 296
10.4.2 Pyrolysis Temperature 297
10.5 Utilization of Biochar 310
10.5.1 As a Soil Amendment 310
10.5.2 Carbon Sequestration 310
10.5.3 Remediation of Pollutants from Soil 311
10.5.4 Water and Wastewater Treatment 311
10.6 Conclusion 312
References 313
11 Thermo-economic Study of öNORM M7 133 Chips in a Pilot
Scale Reactor 321
Alok Dhaundiyal and Divine Atsu
Notation 321
11.1 Introduction 322
11.2 Material and Methods 324
11.2.1 Installation of the Experimental Unit 324
11.2.2 Physical Exergy of the System 326
11.2.3 Sinking Fund Method 329
11.3 Results and Discussion 331
11.3.1 Exergy Analysis 331
11.3.2 Valuation of Pyrolysis Unit 337
11.4 Conclusion 338
References 338
12 Production and Characterization of Briquettes Produced
from Blend of Rice Husk and Water-Hyacinth 341
Modestus O. Okwu, Omonigho B. Otanocha,
Olusegun D. Samuel and E. E. Akporhonor
12.1 Background of the Study 342
12.2 Review of Literature 343
12.2.1 Renewable Energy Demand 343
12.2.2 Briquette Production 344
12.2.3 Feedstock for Briquette Production 344
12.2.4 Proximate Analysis of Briquettes 345
12.3 Materials and Method 345
12.3.1 Material Processing, Measurement and Blending 345
12.3.2 Proximate Analysis of Sample Materials 346
12.3.3 Moisture Content MC (%) 347
12.3.4 Ash Content AC (%) 347
12.3.5 Volatile Matter (VM) Content 348
12.3.6 Fixed Carbon Content FC (%) 348
12.3.7 Calorific Value 348
12.4 Results and Analysis 349
12.4.1 Moisture Content 349
12.4.2 Volatile Matter Content 349
12.4.3 Ash Content 350
12.4.4 Fixed Carbon Content 350
12.5 Discussion 351
12.6 Conclusion 352
Acknowledgement 352
References 352
13 Torrefaction and Pelletization of Lignocellulosic Biomass
for Energy Intensified Fuel Substitute 357
Chitra Devi Venkatachalam, Mothil Sengottian and
Sathish Raam Ravichandran
13.1 Introduction – Biomass as Fuel 358
13.2 Torrefaction 359
13.2.1 Reaction Mechanism 359
13.2.2 Characterization of Torrefied Biomass 360
13.2.2.1 Moisture Content 360
13.2.2.2 Bulk Density 360
13.2.2.3 Grindability 361
13.2.2.4 High Heating Value 361
13.2.2.5 Mass Yield, Energy Yield and
Enhancement Factor 362
13.2.2.6 Particle Size Distribution 363
13.2.3 Reactors for Torrefaction 364
13.2.3.1 Fixed Bed Reactor 364
13.2.3.2 Moving Bed Reactor 364
13.2.3.3 Entrained Flow reactor 364
13.2.3.4 Fluidized Bed Reactor 364
13.2.3.5 Rotary Drum Reactor 365
13.2.3.6 Microwave Reactor 365
13.2.3.7 Hydrothermal Reactor 365
13.3. Pelletization 365
13.3.1 Pelletization of Torrefied Biomass 365
13.3.2 Types of Pelletizers 367
13.3.2.1 Flat Die Pellet Mill 367
13.3.2.2 Round die pellet mill 367
13.3.3 Influence of Process Parameters during the
Pelletization 368
13.3.3.1 Moisture Content 368
13.3.3.2 Pelletization Temperature 368
13.3.3.3 ParticLe Size 368
13.3.3.4 Press Channel Dimensions 368
13.3.3.5 Pelletization Pressure 368
13.3.3.6 Torrefaction Temperature 369
13.4 Application of Torrefaction Process 369
13.4.1 Using Torrefaction as Pre-Treatment Step for
Biomass Gasification 369
13.4.2 Blending Torrefied Biomass with Coal and
Co-Firing for Energy Production 369
13.4.3 Fuel for Steel Making in Blast Furnace 370
13.5 Conclusion 370
Reference 370
Index
Back to Top