Uniquely provides up-to-date and comprehensive information on the topic in an easily-accessible form.
Table of ContentsPreface
Part 1: Preparation, Properties and Characterization
1. Structural Epoxy AdhesivesChunfu Chen
1.1 Introduction
1.2 Epoxy Adhesive Chemistry
1.2.1 Epoxy Resins
1.2.2 Curing Agents and Catalysts
1.2.3 Formulating Epoxy Adhesives
1.3 Properties, Testing and Characterization
1.4 Typical Epoxy Adhesives
1.4.1 Room Temperature Cure Epoxy Adhesives
1.4.2 Thermal Cure Epoxy Adhesives
1.4.3 UV Cure Epoxy Adhesives
1.5 Recent Developments and New Trends
1.5.1 High Performance Toughened Epoxy Adhesives
1.5.2 Low Temperature Cure One-Component Epoxy Adhesives
1.5.3 Instant Bonding Epoxy Adhesives
1.5.4 Sustainable Epoxy Adhesive Development
1.6 Summary
References
2. Biological Reinforcement of Epoxies as Structural AdhesivesAnna Rudawska, Jakub Szabelski, Izabela Miturska-Barańska and Elżbieta Doluk
2.1 Introduction
2.2 Epoxy Resins and Curing Agents
2.2.1 Epoxy Resins
2.2.2 Curing Agents
2.2.3 Curing Methods
2.2.4 Epoxy Structural Adhesives
2.3 Modification of Epoxies, and Modifying Agents
2.3.1 Epoxy Modification Methods
2.3.2 Fillers Properties
2.3.3 Fillers Types
2.3.3.1 Filler Classification Criterion: Type of Material
2.3.3.2 Filler Classification Criterion: Shape of the Filler Particles
2.3.3.3 Filler Classification Criterion: Filler Particle Size
2.3.3.4 Filler Classification Criterion: Origin
2.3.3.5 Filler Classification Criterion: Activity
2.4 Biological Reinforcement of Epoxy Adhesives
2.4.1 Introduction
2.4.2 Types of Biological Reinforcements
2.4.2.1 Natural Fibers
2.4.2.2 Wood
2.4.2.3 Vegetable Oils
2.4.2.4 Fungi
2.4.2.5 Extracted Plant Ingredients
2.4.2.6 Nut Shells
2.4.2.7 Straw
2.4.3 Natural Fibers
2.4.4 Plant Fibers
2.4.4.1 Cotton Fibers
2.4.4.2 Hemp Fibers
2.4.4.3 Linen (Flax) Fibers
2.4.4.4 Jute Fibers
2.4.4.5 Sisal Fibers
2.4.4.6 Coconut (Coir) Fibers
2.4.4.7 Cellulose Fibers
2.4.4.8 Bamboo Fibers
2.4.4.9 Kenaf Fibers
2.4.4.10 Other Fibers
2.5 Fungi-Modified Adhesives
2.6 Prospects
2.7 Summary
References
3. Marble Dust Reinforced Epoxy Structural Adhesive CompositesAmar Patnaik, Pankaj Agarwal, Ankush Sharma, Deepika Shekhawat and Tapan Kumar Patnaik
3.1 Introduction
3.2 Materials and Methods
3.2.1 Procurement of Raw Materials
3.2.2 Fabrication of Composites
3.2.3 Physical and Mechanical Characterization
3.2.3.1 Density and Void Content
3.2.3.2 Water Absorption
3.2.3.3 Vickers Hardness
3.2.3.4 Tensile Test
3.2.3.5 Flexure Test
3.2.3.6 Impact Test
3.2.3.7 Thermal Conductivity
3.2.3.8 Specific Wear Rate
3.2.3.9 TOPSIS Approach
3.3 Results and Discussion
3.3.1 Density and Void Content
3.3.2 Water Absorption
3.3.3 Hardness
3.3.4 Tensile Strength and Tensile Modulus
3.3.5 Flexural Strength and Flexural Modulus
3.3.6 Impact Energy
3.3.7 Thermal Conductivity
3.3.8 Specific Wear Rate
3.3.9 Ranking of Epoxy Adhesive Composites
3.4 Summary and Conclusions
References
4. Characterization of Various Structural Adhesive MaterialsSrujan Sapkal, Pooja Maske, S. K. Panigrahi and Himanshu S. Panda
List of Abbreviations
List of Symbols
4.1 Introduction
4.2 Various Structural Adhesives and their Properties
4.2.1 Phenolic Structural Adhesives
4.2.2 Epoxy Structural Adhesives
4.2.3 Polyurethane (PU) Structural Adhesives
4.2.4 Acrylic Structural Adhesives
4.2.5 Cyanoacrylate Structural Adhesives
4.2.6 Silicone Structural Adhesives
4.3 Characterization Techniques for Structural Adhesives
4.3.1 Chemical Characterization
4.3.1.1 Energy Dispersive X-ray (EDX)
4.3.1.2 X-ray Photoelectron Spectroscopy (XPS)
4.3.1.3 Fourier Transform Infrared Spectroscopy (FTIR)
4.3.1.4 Gas-Liquid Chromatography (GLC)
4.3.1.5 Nuclear Magnetic Resonance
4.3.1.6 Raman Spectroscopy
4.3.2 Physical Characterization
4.3.2.1 Contact Angle Measurement
4.3.2.2 Scanning Electron Microscopy (SEM)
4.3.2.3 Gelation Time
4.3.2.4 Small Angle X-ray Scattering (SAXS)
4.3.2.5 Atomic Force Microscopy (AFM)
4.3.3 Thermal Characterization
4.3.3.1 Thermogravimetric Analysis (TGA)
4.3.3.2 Differential Thermal Analysis (DTA)
4.3.3.3 Differential Scanning Calorimetry (DSC)
4.3.4 Mechanical Characterization
4.3.4.1 Tensile Test
4.3.4.2 Lap Shear Test
4.3.4.3 Dynamic Mechanical Analysis (DMA)
4.4 Summary
Acknowledgements
References
5. The Effects of Shear and Peel Stress Distributions on the Behavior of Structural Adhesives in Tubular Composite JointsMohammad Shishesaz
5.1 Introduction
5.1.1 A Brief Review of Loads (Stresses) and Failure of Adhesively Bonded Tubular Composite Joints
5.1.2 Major Factors Affecting the Peel and Shear Stresses in the Adhesive Layer and its Performance (Failure)
5.2 Governing Equations Based on Linear Elasticity
5.2.1 Typical Assumptions in a Tubular Lap Joint under Torsion
5.3 Factors Influencing the Adhesive Behavior and Stresses
5.3.1 The Effects of Geometric and Mechanical Properties of the Adhesive and Adherends
5.3.2 The Effects of Load Type on the Adhesive Stresses and Behavior
5.3.3 The Effects of Damages due to Voids, Debonds, or Delaminations
5.3.4 Additional Factors Influencing the Adhesive Behavior and Its Performance
5.3.5 The Effect of Nonlinear Behavior of the Adhesive on Its Performance
5.3.6 Factors Influencing the Failure Behavior of the Adhesive Layer
5.4 Design Aspects Regarding the Selection of Adhesive Layer
5.5 Summary
Acknowledgement
Nomenclature
References
6. Inelastic Response of Structural Aerospace AdhesivesYi Chen and Lloyd Smith
List of Symbols
6.1 Introduction
6.2 Time-Independent Plasticity
6.2.1 Yield Stress
6.2.2 Elasto-Plastic Models
6.3 Time-Dependent Inelasticity
6.3.1 Creep Loading
6.3.2 Cyclic Loading
6.3.3 Time-Dependent Models
6.3.3.1 Modeling of Creep
6.3.3.2 Modeling of Ratcheting
6.4 Environmental Factors
6.4.1 Temperature
6.4.2 Moisture
6.4.3 Modeling
6.5 Summary
References
Part 2: Applications
7. Structural Reactive Acrylic Adhesives: Preparation, Characterization, Properties and ApplicationsD.A. Aronovich and L.B. Boinovich
7.1 Introduction
7.2 Сompositions and Chemistries
7.2.1 Base Monomer
7.2.2 Thickeners and Elastomeric Components
7.2.3 Adhesive Additives
7.2.4 Initiators
7.2.5 Aerobically Curable Systems
7.2.6 Fillers
7.3 Physico-Mechanical Properties of SAAs
7.4 Adhesives for Low Surface Energy Materials
7.4.1 Initiators Based on Trialkylboranes
7.4.2 Comparison of the Initiation System Containing Trialkylborane with the Redox System Benzoyl Peroxide (BPO) - Tertiary Aromatic Amine
7.4.3 Alternative Types of Trialkylborane Initiators
7.4.4 Additives Modifying the Curing Stage
7.4.5 Other Components of SAAs
7.4.6 Hybrid SAAs
7.5 Comparison of the Properties of SAAs and Other Reactive Adhesives
7.6 Summary and Outlook
References
8. Application of Structural Adhesives in Composite ConnectionsM. D. Banea and H.F.M. de Queiroz
8.1 Introduction
8.2 Factors Affecting the Performance of Composite Adhesive Joints
8.2.1 Effect of Surface Preparation
8.2.2 Effect of Joint Configuration and Failure Mode
8.2.3 Effect of Mechanical Properties of Adhesive and Adherend Materials
8.2.4 Effect of the Environmental Conditions
8.3 Recent Developments and Trends
8.4 Summary
References
9. Naval Applications of Structural AdhesivesBikash Chandra Chakraborty
List of Abbreviations
List of Symbols with Units
9.1 Introduction
9.2 Type of Marine Adhesives
9.2.1 Essential Characteristics
9.2.2 Flexible Adhesives
9.2.2.1 Bonding Multilayer Rubber Tiles
9.2.2.2 Bonding Silicone Rubber Gaskets
9.2.3 Thermoset-Based Marine Adhesives
9.3 Application on Naval Platform
9.3.1 Vibrodamping Arrangements
9.3.2 Underwater Application
9.3.3 Acid-Resistant Rubber Bonding
9.3.3.1 Example
9.4 Diffusion of Water in Adhesive Matrix
9.4.1 Fickian Diffusion
9.4.1.1 Example
9.4.2 Dual-Fickian Prediction
9.4.3 Effect on Flexural Strength
9.4.3.1 Example
9.5 Summary
References
Index Back to Top