This book covers acid gas injection and carbon dioxide sequestration, two "green" techniques in the petroleum and natural gas industry that are gaining in importance and usage.
Table of ContentsContents
Preface xv
Acknowledgement xvii
Chapter 1 Introduction 1
1.1 Acid Gas 2
1.1.1 Hydrogen Sulfide 3
1.1.2 Carbon Dioxide 4
1.2 Anthropogenic CO2 5
1.3 Flue Gas 5
1.3.1 Sulfur Oxides 7
1.3.2 Nitrogen Oxides 8
1.4 Standard Volumes 8
1.4.1 Gas Volumes 8
1.4.2 Liquid Volumes 9
1.5 Sulfur Equivalent 9
1.6 Sweetening Natural Gas 11
1.6.1 Combustion Process Gas 12
1.6.1.1 Post-Combustion 13
1.6.1.2 Pre-Combustion 14
1.7 Acid Gas Injection 14
1.8 Who Uses Acid-Gas Injection? 16
1.8.1 Western Canada 16
1.8.2 United States 17
1.8.3 Other Locations 17
1.8.4 CO2 Flooding 18
1.9 In Summary 18
References 18
Appendix 1A Oxides of Nitrogen 20
Appendix 1B Oxides of Sulfur 22
vii
viii Contents
Chapter 2 Hydrogen Sulfi de and Carbon Dioxide 23
2.1 Properties of Carbon Dioxide 25
2.2 Properties of Hydrogen Sulfi de 27
2.3 Estimation Techniques for Physical
Properties 31
2.3.1 Thermodynamic Properties 31
2.3.1.1 Ideal Gas 31
2.3.1.2 Real Gas 33
2.3.2 Saturated Liquid and Vapor
Densities 36
2.3.2.1 Liquids 36
2.3.2.2 Corresponding States 37
2.3.3 Thermodynamic Properties 39
2.3.4 Transport Properties 40
2.3.4.1 Low Pressure Gas 40
2.3.4.2 Gases Under Pressure 41
2.3.4.3 Liquids 42
2.3.5 Viscosity Charts 43
2.4 Properties of Acid Gas Mixtures 44
2.4.1 Thermodynamic Properties 44
2.4.1.1 Corresponding States 45
2.4.2 Transport Properties 47
2.4.3 Word of Caution 48
2.5 Effect of Hydrocarbons 50
2.5.1 Density 50
2.5.2 Viscosity 51
2.6 In Summary 51
References 51
Appendix 2A Transport Properties of Pure Hydrogen
Sulfi de 53
2A.1 Viscosity 53
2A.1.1 Liquid 53
2.A.1.2 Vapor 54
2A.2 Thermal Conductivity 55
References 57
Appendix 2B Viscosity of Acid Gas Mixtures 59
2B.1.1 Correcting for High Pressure 59
2B.1.2 Carbon Dioxide 59
2B.1.3 Generalization 61
Contents ix
2B.1.4 Mixtures 62
2B.1.5 Final Comments 63
References 63
Appendix 2C Equations of State 64
2C.1.1 Soave-Redlich-Kwong Equation
of State 64
2C.1.2 Peng-Robinson Equation of State 64
2C.1.3 The Patel-Teja Equation of State 65
Chapter 3 Non-Aqueous Phase Equilibrium 69
3.1 Overview 69
3.2 Pressure-Temperature Diagrams 70
3.2.1 Pure Components 70
3.2.2 Mixtures 73
3.2.3 Binary Critical Points 76
3.2.4 Effect of Hydrocarbons 77
3.2.4.1 Methane 78
3.2.4.2 Ethane and Propane 79
3.2.4.3 Butane and Heavier 80
3.2.4.4 In Summary 81
3.3 Calculation of Phase Equilibrium 82
3.3.1 Equations of State 82
3.3.2 K-Factor Charts 83
3.4 In Summary 85
References 85
Appendix 3A Some Additional Phase Equilibrium
Calculations 86
3A.1.1 Hydrogen Sulfi de + Hydrocarbons 86
3A.1.2 Carbon Dioxide + Hydrocarbons 87
3A.1.3 Multicomponent Mixtures 88
References 92
Appendix 3B Accuracy of Equations of State for
VLE in Acid Gas Mixtures 96
References 98
Chapter 4 Fluid Phase Equilibria Involving Water 99
4.1 Water Content of Hydrocarbon Gas 100
4.2 Water Content of Acid Gas 101
4.2.1 Carbon Dioxide 102
4.2.2 Hydrogen Sulfi de 103
x Contents
4.2.3 Practical Representation 106
4.2.3.1 In Summary 108
4.3 Estimation Techniques 108
4.3.1 Simple Methods 109
4.3.1.1 Ideal Model 109
4.3.1.2 McKetta-Wehe Chart 109
4.3.1.3 Maddox Correction 110
4.3.1.4 Wichert Correction 110
4.3.1.5 Alami et al. 111
4.3.2 Advanced Methods 111
4.3.2.1 AQUAlibrium 111
4.3.2.2 Other Software 112
4.4 Acid Gas Solubility 113
4.4.1 Henry ¢--€š¬--€ž¢s Law 113
4.4.2 Solubility in Brine 115
4.4.2.1 Carbon Dioxide in NaCl 116
4.4.2.2 Hydrogen Sulfi de in NaCl 116
4.4.2.3 Mixtures of Gases 119
4.4.2.4 Effect of pH 119
4.5 In Summary 119
References 120
Appendix 4A Compilation of the Experimental
Data for the Water Content of Acid Gas 122
References 124
Appendix 4B Comments on the Work of Selleck et al. 127
Appendix 4C Density of Brine (NaCl) Solutions 129
Chapter 5 Hydrates 131
5.1 Introduction to Hydrates 131
5.2 Hydrates of Acid Gases 132
5.3 Estimation of Hydrate Forming Conditions 135
5.3.1 Shortcut Methods 135
5.3.2 Rigorous Methods 136
5.4 Mitigation of Hydrate Formation 136
5.4.1 Inhibition with Methanol 136
5.4.2 Water-Reduced Cases 138
5.4.2.1 Carbon Dioxide 139
5.4.2.2 Dehydration 140
Contents xi
5.4.2.3 To Dehydrate or Not to
Dehydrate? ¢--€š¬ That is the
Question! 141
5.4.3 Application of Heat 142
5.4.3.1 Line Heaters 142
5.4.3.2 Heat Tracing 142
5.4.3.3 Final Comment 142
5.5 Excess Water 142
5.6 Hydrates and AGI 143
5.7 In Summary 143
References 143
Chapter 6 Compression 145
6.1 Overview 145
6.2 Theoretical Considerations 148
6.3 Compressor Design and Operation 148
6.4 Design Calculations 149
6.4.1 Compression Ratio 150
6.4.2 Ideal Gas 151
6.4.3 Effi ciency 157
6.4.4 Ratio of the Heat Capacities 158
6.5 Interstage Coolers 159
6.5.1 Design 160
6.5.2 Pressure Drop 164
6.5.3 Phase Equilibrium 164
6.6 Compression and Water Knockout 167
6.6.1 Additional Cooling 171
6.7 Materials of construction 172
6.8 Advanced design 172
6.8.1 Cascade 172
6.8.2 CO2 Slip 173
6.9 Case studies 174
6.9.1 Wayne-Rosedale 174
6.9.2 Acheson 175
6.9.3 West Pembina 175
6.10 In Summary 175
References 176
Appendix 6A Additional Calculations 177
xii Contents
Chapter 7 Dehydration of Acid Gas 183
7.1 Glycol Dehydration 184
7.1.1 Acid Gas Solubility 185
7.1.2 Desiccant 187
7.2 Molecular Sieves 189
7.2.1 Acid Gas Adsorption 191
7.3 Refrigeration 192
7.3.1 Selection of Inhibitor 193
7.4 Case Studies 194
7.4.1 CO2 Dehydration 194
7.4.2 Acid Gas Dehydration 195
7.4.2.1 Wayne-Rosedale 195
7.4.2.2 Acheson 195
7.5 In Summary 196
References 196
Chapter 8 Pipeline 199
8.1 Pressure Drop 199
8.1.1 Single Phase Flow 199
8.1.1.1 Friction Factor 202
8.1.1.2 Additional Comments 204
8.1.2 Two-Phase Flow 205
8.1.3 Transitional Flow 205
8.2 Temperature Loss 206
8.2.1 Carroll ¢--€š¬--€ž¢s Method 206
8.3 Guidelines 207
8.4 Metering 208
8.5 Other Considerations 209
8.6 In Summary 210
References 210
Appendix 8A Sample Pipeline Temperature Loss
Calculation 211
8A.1 AQUAlibrium 3.0 212
8A.1.1 Acid Gas Properties 212
8A.1.1.1 Conditions 212
8A.1.1.2 Component Fractions 212
8A.1.1.3 Phase properties 212
8A.1.1.4 Warnings 212
Contents xiii
Chapter 9 Injection Profi les 215
9.1 Calculation of Injection Profi les 215
9.1.1 Gases 216
9.1.1.1 Ideal Gas 216
9.1.1.2 Real Gas 217
9.1.2 Liquids 220
9.1.3 Supercritical Fluids 221
9.1.4 Friction 221
9.1.5 AGIProfi le 221
9.2 Effect of Hydrocarbons 224
9.3 Case Studies 228
9.3.1 Chevron Injection Wells 228
9.3.1.1 West Pembina 229
9.3.1.2 Acheson 230
9.3.2 Anderson Puskwaskau 232
9.4 Other Software 232
9.5 In Summary 232
References 232
Appendix 9A Additional Examples 234
Chapter 10 Selection of Disposal Zone 239
10.1 Containment 239
10.1.1 Reservoir Capacity 240
10.1.2 Caprock 240
10.1.3 Other Wells 241
10.2 Injectivity 241
10.2.1 Liquid Phase 241
10.2.2 Gas Injection 244
10.2.3 Fracturing 245
10.2.4 Horizontal Wells 245
10.3 Interactions With Acid Gas 245
10.4 In Summary 246
References 246
Chapter 11 Health, Safety and The Environment 247
11.1 Hydrogen Sulfi de 247
11.1.1 Physiological Properties 248
11.1.2 Regulations 248
11.1.3 Other Considerations 249
xiv Contents
11.2 Carbon Dioxide 249
11.2.1 Physiological Properties 249
11.2.2 Climate Change 250
11.2.3 Other Considerations 250
11.3 Emergency Planning 250
11.3.1 Accidental Releases 250
11.3.2 Planning Zones 251
11.3.3 Other Considerations 255
11.3.3.1 Sour vs. Acid Gas 255
11.3.3.2 Wind 256
11.3.3.3 Carbon Dioxide 256
11.3.3.4 Sensitive Areas 256
References 256
Chapter 12 Capital Costs 257
12.1 Compression 257
12.1.1 Reciprocating Compressor 258
12.1.2 Centrifugal 259
12.2 Pipeline 259
12.3 Wells 260
12.4 In Summary 261
References 261
Chapter 13 Additonal Topics 263
13.1 Rules of Thumb 263
13.1.1 Physical Properties 263
13.1.2 Water Content 264
13.1.3 Hydrates 264
13.1.4 Compression 264
13.1.5 Pipelines 265
13.1.6 Reservoir 266
13.2 Graphical Summary 266
13.2.1 Pressure 6/8/2010
Back to Top