Search

Browse Subject Areas

For Authors

Submit a Proposal

Energy Storage Technologies in Grid Modernization

Edited by Sandeep Dhundhara, Yajvender Pal Verma, and Ashwani Kumar
Copyright: 2023   |   Status: Published
ISBN: 9781119872115  |  Hardcover  |  
343 pages
Price: $225 USD
Add To Cart

One Line Description
Written and edited by a team of experts, this exciting new volume discusses the various types of energy storage technologies, the applications of energy storage systems, the performance improvement of modern power systems, their role in the real-time operation of power markets, and the operational issues of modern power systems, including renewable-based generating sources.

Audience
Engineers, scientist, technicians, and other professionals and students in power engineering, electrical engineering, electrical and electronics engineering, control engineering, mechanical engineering, instrumentation engineering, and renewable energy

Description
The worldwide energy sector, specifically power generation, has undergone a huge transformation in recent years, and the focus is to make it sustainable, environmentally friendly, reliable, and highly efficient. As a result, a significant share of highly intermittent but clean renewable sources is being integrated into the power system using advanced technological components. The higher penetration level of renewable energy sources (RESs) has increased the active power generation share in the grid but reduced the total rotating system inertia. This high reduction in inertia brings new challenges and technical issues to the operators of modern power systems and impact the stability and security of the grid.

The stochasticity of these renewable sources also poses a big challenge to the efficient operation of the power system. Electrical energy storage systems help to manage such issues and challenges that occur due to the intermittent nature of RES and can play a big role in the smooth and reliable operation of the power system. The applications and opportunities to use storage on the grid are growing due to the improvements in energy storage technologies, and flexible regulatory frameworks. Technological developments have made it possible to use batteries and other Energy Storage Systems (ESSs) for managing the operation of the power system.

This book aims to illustrate the potential of energy storage systems in different applications of the modern power system considering recent advances and research trends in storage technologies. These areas are going to play a very significant role in future smart grid operations. This book discusses the various types of energy storage technologies and promotes the applications of ESSs in performance improvement of modern power systems. Whether for the veteran engineer, new hire, or student, it is a must have for any library.


Back to Top
Author / Editor Details
Sandeep Dhundhara, PhD, is an assistant professor in the Department of Basic Engineering at Haryana Agricultural University, India. He has a total of eight years of teaching and research experience in electrical engineering. He has published several papers in various international journals and conferences, and he has published one book with Scrivener Publishing, Energy Storage for Modern Power System Operations.

Yajvender Pal Verma, PhD, is a professor in the Department of Electrical and Electronics Engineering at Panjab University, India. He has one book and more than 80 papers in various national and international journals and conferences to his credit. He also has been granted one Indian patent.

Ashwani Kumar, PhD, is a professor, in the Department of Electrical Engineering at the National Institute of Technology, India. He has more than 110 papers in scholarly and technical journals to his credit, and he has organized several international conferences, including for the Institute of Electrical and Electronic Engineers (IEEE).

Back to Top

Table of Contents
Preface
1. Overview of Current Development and Research Trends in Energy Storage Technologies

O. Apata
1.1 Introduction
1.2 The Technology of Energy Storage
1.3 Energy Storage and Smart Grids
1.4 Energy Storage and Micro-Grids
1.5 Energy Storage Policy Recommendations
1.6 Energy Storage: Challenges and Opportunities
1.7 Practical Implementations of Energy Storage Technologies
1.8 Conclusions
References
2. A Comprehensive Review of the Li-Ion Batteries Fast-Charging Protocols
Talal Mouais and Saeed Mian Qaisar
2.1 Introduction
2.2 The Literature Review
2.2.1 Overview of Lithium-Ion Battery Working Principle
2.2.2 Principles of Battery Fast-Charging
2.2.3 Multi-Scale Design for Fast Charging
2.2.4 Electrode Materials
2.2.5 Fast-Charging Strategies
2.2.6 Types of Charging Protocols
2.2.7 Li-Ion Battery Degradation
2.2.8 Factors that Cause Battery Degradation
2.2.9 Degradation Mechanism of the Li-Ion Battery
2.2.10 Electrode Degradation in Lithium-Ion Batteries
2.2.11 The Battery Management System
2.2.12 Battery Technology Gap Assessment for Fast-Charging
2.2.13 Developmental Needs
2.3 Materials and Methods
2.4 Discussion
2.5 Conclusion
Acknowledgements
References
3. Development of Sustainable High‑Performance Supercapacitor Electrodes from Biochar-Based Material
Kriti Shrivastava and Ankur Jain
3.1 Introduction
3.2 Role of Energy Storage Systems in Grid Modernization
3.3 Overview of Current Developments of Supercapacitor-Based Electrical Energy
Storage Technologies
3.4 Potential of Biochar as High-Performance Sustainable Material
3.5 Overview of Recent Developments in Biochar-Based EDLC Supercapacitor
3.5.1 Wood & Plant Residues as Biochar Precursor for Supercapacitor Applications
3.5.2 Biochar-Based Supercapacitors from Waste Biomass
3.5.3 Carbon-Based Supercapacitors from Other Methods
3.6 Current Challenges and Future Potential of Biochar-Based Supercapacitor
3.7 Conclusion
References
4. Energy Storage Units for Frequency Management in Nuclear Generators-Based Power System
Boopathi D., Jagatheesan K., Sourav Samanta, Anand B. and Satheeshkumar R.
4.1 Introduction
4.1.1 Structure of the Chapter
4.1.2 Objective of the Chapter
4.2 Investigated System Modeling
4.2.1 Battery Energy Storage System (BESS) Model
4.2.2 Fuel Cell (FC) Model
4.2.3 Redox Flow Battery (RFB) Model
4.2.4 Proton Exchange Membrane (PEM) Based FC Model
4.2.5 Ultra-Capacitor (UC) Model
4.2.6 Supercapacitor Energy Storage (SCES) Model
4.3 Controller and Cost Function
4.4 Optimization Methodology
4.5 Impact Analysis of Energy Storage Units
4.5.1 Impact of BESS
4.5.2 Impact of FC
4.5.3 Impact of RFB
4.5.4 Impact Analysis of the PEM-FC
4.5.5 Impact Analysis of UC
4.5.6 Impact Analysis of SCES
4.6 Result and Discussion
4.7 Conclusion
Appendix
References
5. Detailed Comparative Analysis and Performance of Fuel Cells
Tejinder Singh Saggu and Arvind Dhingra
5.1 Introduction
5.2 Classification of Fuel Cells
5.2.1 Based on Fuel-Oxidizer Electrolyte
5.2.1.1 Direct Fuel Cell
5.2.1.2 Regenerative FC
5.2.1.3 Indirect Fuel Cells
5.2.2 Based on the State of Aggregation of Reactants
5.2.2.1 Solid Fuel Cells
5.2.2.2 Gaseous Fuel Cells
5.2.2.3 Liquid Fuel Cells
5.2.3 Based on Electrolyte Temperature
5.2.3.1 Proton Exchange Membrane
5.2.3.2 Direct Methanol
5.2.3.3 Alkaline
5.2.3.4 Phosphoric Acid
5.2.3.5 Molten Carbonate
5.2.3.6 Solid Oxide
5.3 Cost of Different Fuel Cell Technologies
5.4 Conclusion
References
6. Machine Learning–Based SoC Estimation: A Recent Advancement in Battery Energy Storage System
Prerana Mohapatra, Venkata Ramana Naik N. and Anup Kumar Panda
6.1 Introduction
6.2 SoC Estimation Techniques
6.2.1 Coulomb Counting Approach
6.2.2 Look-Up Table Method
6.2.3 Model-Based Methods
6.2.3.1 Electrochemical Model
6.2.3.2 Equivalent Circuit Model
6.2.4 Data-Driven Methods
6.2.5 Machine Learning–Based Methods
6.2.5.1 Support Vector Regression
6.2.5.2 Ridged Extreme Learning Machine (RELM)
6.3 BESS Description
6.4 Results and Discussion
6.5 Conclusion
References
7. Dual-Energy Storage System for Optimal Operation of Grid‑Connected Microgrid System
Deepak Kumar and Sandeep Dhundhara
7.1 Introduction
7.2 System Mathematical Modelling
7.2.1 Modelling of Wind Turbine Power Generator
7.2.2 Modelling of Solar Power Plant
7.2.3 Modelling of Conventional Diesel Power Generator
7.2.4 Modelling of Combined Heat and Power (CHP) and Boiler Plant
7.2.5 Modelling of Dual Energy Storage System
7.2.5.1 Battery Bank Storage System
7.2.5.2 Pump Hydro Storage System
7.2.6 Modelling of Power Transfer Capability
7.3 Objective Function and Problem Formulations
7.3.1 Operational and Technical Constraints
7.4 Simulation Results and Discussions
7.5 Conclusion
References
8. Applications of Energy Storage in Modern Power System through Demand-Side Management
Preeti Gupta and Yajvender Pal Verma
8.1 Introduction to Demand-Side Management
8.1.1 Demand-Side Management Techniques
8.1.1.1 Energy Efficiency
8.1.1.2 Demand Response
8.1.2 Demand-Side Management Approaches
8.2 Operational Aspects of DR
8.3 DSM Challenges
8.4 Demand Response Resources
8.5 Role of Battery Energy Storage in DSM
8.5.1 Case Study I: Peak Load and PAR Reduction
8.5.1.1 Problem Formulation
8.5.1.2 Energy Storage Dispatch Modelling
8.5.2 Case Study II: Minimizing Load Profile Variations
8.5.2.1 Problem Formulation
8.5.2.2 SPV System Modelling
8.5.3 Results and Discussions
8.5.3.1 Case Study I: Peak Load and PAR Reduction Using Batteries with DR
8.5.3.2 Case Study II: Minimizing Load Profile Variations Using Batteries with DR
8.6 Conclusion
References
9. Impact of Battery Energy Storage Systems and Demand Response Program on Locational Marginal Prices in Distribution System
Saikrishna Varikunta and Ashwani Kumar
9.1 Introduction
9.1.1 Battery Energy Storage System (BESS)
9.1.2 Demand Response Program
9.2 Problem Formulation and Solution Using GAMS
9.2.1 Objective Functions for Case Studies: Case 1 to Case 5
9.2.1.1 Case 1: Is Minimization of the Active Power Production Cost
9.2.1.2 Case 2: Minimization of the Active Power Production and Reactive Power
Production Cost
9.2.1.3 Case 3: Minimization of the Active Power Production and Reactive Power
Production Cost Along with Capacitor Placement
9.2.1.4 Case 4: Minimization of the Active Power Production and Reactive Power Production Cost Including Capacitor and BESS Cost
9.2.1.5 Case 5: Minimization of the Active Power Production and Reactive Power Production Cost Including Capacitor and BESS Cost and Taking the Impact of Demand Response Program
9.2.2 Real and Reactive Power Equality Constraints
9.2.2.1 Equality Constraints
9.2.2.2 Inequality Constraints: (at any bus i): Voltage, Power Generation, Line Flow,
SOC, Battery Energy Storage Power
9.2.3 Modified Lagrangian Function
9.2.4 Generator Economics Calculations
9.3 Case Study: Numerical Computation
9.4 Results and Discussions
9.4.1 Case 1: Minimization of the Active Power Production Cost
9.4.2 Case 2: Minimization of the Active Power Production and Reactive Power Production Cost
9.4.3 Case 3: Minimization of the Active Power Production and Reactive Power Production Cost Along
9.4.4 Case 4: Minimization of the Active Power Production and Reactive Power Production Cost
9.4.5 Case 5: Minimization of the Active Power Production and Reactive Power Production Cost
9.5 Conclusions
References
10. Cost-Benefit Analysis with Optimal DG Allocation and Energy Storage System Incorporating Demand Response Technique
Rohit Kandpal, Ashwani Kumar, Sandeep Dhundhara and Yajvender Pal Verma
10.1 Introduction
10.2 Distribution Generation and Energy Storage System
10.2.1 Renewable Energy in India
10.2.2 Different Types of Energy Storage and their Opportunities
10.2.3 Distributed Generation
10.2.3.1 Solar Photovoltaic Panel-Based DG (PVDG)
10.2.3.2 Wind Turbine–Based DG (WTDG)
10.2.3.3 Load Model and Load Profile
10.2.4 Demand Response Program
10.2.5 Electric Vehicles
10.2.6 Modeling of Energy Storage System
10.2.7 Problem Formulation
10.2.8 Distribution Location Marginal Pricing
10.3 Grey Wolf Optimization
10.4 Numerical Simulation and Results
10.5 Conclusions
References
11. Energy Storage Systems and Charging Stations Mechanism for Electric Vehicles
Saurabh Ratra, Kanwardeep Singh and Derminder Singh
11.1 Introduction to Electric Vehicles
11.1.1 Role of Electric Vehicles in Modern Power System
11.1.2 Various Storage Technologies
11.1.3 Electric Vehicle Charging Structure
11.2 Introduction to Electric Vehicle Charging Station
11.2.1 Types of Charging Station
11.2.2 Charging Levels
11.2.3 EV Charging
11.2.4 Charging Period
11.3 Modern System Efficient Approches
11.3.1 Smart Grid Technology
11.3.2 Renewable Energy Technology
11.3.3 V2G Technology
11.3.4 Smart Transport System
11.4 Battery Charging Techniques
11.4.1 Electric Vehicle Charging Station in Modern Power System
11.5 Indian Scenario
11.6 Energy Storage System Evaluation for EV Applications
11.7 ESS Concerns and Experiments in EV Solicitations
11.7.1 Raw Materials
11.7.2 Interfacing by Power Electronics
11.7.3 Energy Management
11.7.4 Environmental Impact
11.7.5 Safety
11.8 Conclusion
References
Index

Back to Top



Description
Author/Editor Details
Table of Contents
Bookmark this page