This book presents an extensive discussion on fundamental chemistry, classifications, structure, unique properties, and applications of various 2D nanomaterials.
Table of ContentsPreface
Part 1: Classifications, Synthesis Methods and Surface Modification of Two Dimensional Nanomaterials
1. Introduction to Two-Dimensional Nanomaterials: Discovery, Types and Classifications, Structure, Unique Properties, and ApplicationsIshrat Fatma, Humira Assad and Ashish Kumar
1.1 Introduction
1.2 Types of Two-Dimensional (2D) Nanomaterials or Particles
1.2.1 Layered van der Waals Solids
1.2.2 Layered Ionic Solids
1.2.3 Surface-Assisted Non-Layered Solids
1.3 Examples of Two-Dimensional (2D) Nanomaterials
1.3.1 Graphene
1.3.2 Hexagonal Boron Nitride (h-BN)
1.3.3 Transition Metal Dichalcogenides (TMDCs)
1.3.4 Transition Metal Oxides (TMOs)
1.3.5 Black Phosphorus
1.3.6 Graphitic Carbon Nitride
1.3.7 MXenes
1.3.8 Silicene and Germanene
1.3.9 Metal–Organic Frameworks (MOFs)
1.3.10 Covalent Organic Frameworks
1.3.11 Layered Double Hydroxides
1.3.12 Layered Nanoclays
1.4 Structural Modifications in 2D Nanomaterials
1.4.1 Defects
1.4.1.1 Point Defects
1.4.1.2 Line Defects
1.4.2 Dopants
1.4.2.1 Substitutional Doping
1.4.2.2 Surface Doping
1.4.3 Alloying
1.4.4 Number of Layers
1.4.5 Strain
1.5 Properties of 2D Nanomaterials
1.5.1 Electrical Properties
1.5.2 Thermal Properties
1.5.3 Mechanical and Plasmonic Properties
1.5.4 Magnetic Properties
1.5.5 Piezoelectric Properties
1.5.6 Optical Properties
1.5.7 Lubricant Properties
1.5.8 Dielectric Properties
1.6 Applications of 2D Nanomaterials
1.6.1 Electrochemistry
1.6.1.1 Energy Storage and Conversion
1.6.2 Biomedical Application
1.6.2.1 Tissue Engineering and Gene Delivery
1.6.2.2 Cancer Therapeutics
1.6.2.3 Biosensing and Bioimaging
1.6.3 Environmental Applications
1.6.4 Gas Sensing
1.7 Conclusion
References
2. Synthesis Approaches, Designs, and Processing Methods of Two-Dimensional NanomaterialsRamkishor Anant, Abhishek Tiwari, Suresh Sundaramurthy, Vaibhav Vijay and Gaurav Singh
2.1 Introduction
2.2 Descriptions of Terms Associated with Nanomaterials
2.3 2D Nanomaterial Assembly and Nanostructure
2.4 Approaches for the Synthesis of 2-Dimensional Nanomaterials
2.4.1 Exfoliation Approach
2.4.2 Micromechanical Exfoliation
2.4.3 Ultrasonic Exfoliation
2.4.4 Chemical Vapor Deposition (CVD)
2.4.5 Solvothermal and Hydrothermal Methods
2.4.6 Processing and Applications of 2D Nanomaterials
2.4.6.1 Synthesis and Processing Strategies of Graphene Oxide
2.4.6.2 Synthesis and Processing Strategies of Graphene Nanoplatelets
2.4.6.3 Synthesis and Processing Strategies for Graphene Nanosheets
2.4.6.4 Synthesis of Hexagonal Boron Nitride Films (h-BN)
2.4.6.5 Synthesis of Layered Silicates (Nanoclay)
2.4.6.6 Synthesis of Layered Double Hydroxide (LDH)
2.4.6.7 Synthesis of Graphene-Transition Metal Oxides (TMO)
2.4.6.8 Synthesis of Metal–Organic Frameworks (MOFs)
2.4.6.9 Synthesis of Covalent Organic Frameworks (COFs)
2.4.6.10 Synthesis of Transition Metal Dichalcogenides (TMDs)
2.4.6.11 Synthesis of Black Phosphorus
2.4.6.12 Synthesis of Silicene
2.5 Perspective and Conclusions
References
3. Enhancing 2D Nanomaterials via Surface ModificationsZahra Ranjbar, Sahar Foroughirad and Behnaz Ranjbar
3.1 Introduction
3.2 Chemical Modifications
3.2.1 Covalent Modification
3.2.1.1 Oxidation
3.2.1.2 Hydrogenation
3.2.1.3 Halogenation
3.2.1.4 Electrostatic Interactions
3.2.1.5 Esterification
3.2.1.6 Carboxylation
3.2.1.7 Silylation
3.2.1.8 Radical Reactions
3.2.1.9 Cycloaddition
3.2.1.10 Polymers
3.2.1.11 Other Covalent Functionalization
3.2.2 Non-Covalent Functionalization
3.2.2.1 Hydrogen Bonding
3.2.2.2 π–π Stacking Interactions
3.2.2.3 Cation–π Interactions
3.2.3 Stabilization in an Ionic Medium
3.2.4 In Situ Modification of Nanosheets
3.3 Physical Modifications
3.4 Plasma Technique
3.5 Challenges and Future Trends
3.5.1 Dispersibility
3.5.2 Exfoliation
3.5.3 Electrical Conductivity
3.5.4 Biocompatibility
3.5.5 Cost
3.6 Conclusions
References
Part 2: Properties and Characterizations of Two Dimensional Nanomaterials
4. Spectroscopic and Microscopic Investigations of 2D NanomaterialsRajan Kumar and Debojeet Sahu
4.1 Introduction
4.2 Spectroscopic Investigation of 2D Nanomaterials
4.2.1 Nuclear Magnetic Resonance (NMR) Spectroscopy
4.2.2 Fourier Transform Infrared (FTIR) Spectroscopy
4.2.3 X-Ray Diffraction (XRD)
4.2.4 Ultraviolet–Visible (UV–Vis) Spectroscopy
4.2.5 Fluorescence Spectroscopy
4.2.6 X-Ray Photoelectron Spectroscopy (XPS)
4.2.7 Raman Spectroscopy
4.3 Microscopic Investigation of 2D Nanomaterials
4.3.1 Scanning Electron Microscopy (SEM)
4.3.2 Transmission Electron Microscopy (TEM)
4.3.3 Atomic Force Microscopy (AFM)
4.3.4 Optical Microscopy
4.4 Conclusion
References
5. Structural, Optical, and Electronic Properties of Two-Dimensional NanomaterialsAditya D. S. and S. K. Nataraj
5.1 Introduction
5.2 Classification of 2D Materials
5.2.1 Layered van der Waals Solids
5.2.2 Layered Ionic Solids
5.2.3 Surface-Aided Non-Layered Solids
5.3 Properties of 2D Nanomaterials
5.3.1 Graphene Oxide
5.3.1.1 Structural Properties
5.3.1.2 Optical Properties
5.3.1.3 Electronic Properties
5.3.2 MXenes
5.3.2.1 Structural Properties
5.3.2.2 Optical Properties
5.3.2.3 Electronic Properties
5.3.3 Transition Metal Di-Chalcogenides
5.3.3.1 Structural Properties
5.3.3.2 Optical Properties
5.3.3.3 Electronic Properties
5.3.4 Silicene
5.3.4.1 Structural Properties
5.3.4.2 Optical Properties
5.3.4.3 Electronic Properties
5.3.5 Black Phosphorus
5.3.5.1 Structural Properties
5.3.5.2 Optical Properties
5.3.5.3 Electronic Properties
5.3.6 Metal–Organic Frameworks
5.3.6.1 Structural Properties
5.3.6.2 Optical Properties
5.3.7 Covalent Organic Frameworks
5.3.7.1 Structural Properties
5.3.7.2 Optical Properties
5.3.8 Transition Metal Oxides
5.3.8.1 Structural Properties
5.3.8.2 Optical Properties
5.3.8.3 Electronic Properties
5.3.9 Hexagonal Boron Nitride
5.3.9.1 Structural Properties
5.3.9.2 Optical Properties
5.3.9.3 Electronic Properties
5.3.10 Additional Properties
5.3.10.1 Mechanical Properties
5.3.10.2 Thermal Properties
5.3.10.3 Electric Properties
5.3.10.4 Piezoelectric Properties
5.3.10.5 Magnetic Properties
5.4 Future Prospects
5.5 Conclusion
Acknowledgments
References
6. Electrical, Mechanical, and Thermal Properties of Two-Dimensional NanomaterialsAlok Kumar and Ravi Shankar Rai
6.1 Introduction
6.2 Structures of 2D NMs
6.3 Synthesis and Design of 2D NMs
6.4 Characteristics of 2D NMs
6.4.1 Electrical Properties
6.4.2 Mechanical Properties
6.4.3 Thermal Properties
6.5 Role of Electrical, Mechanical, and Thermal Properties of 2D NMs for Various Applications
Conclusion
References
Part 3: Processing Methods and Properties of Two Dimensional Nanomaterials-Based Polymer Nanocomposites
7. Two-Dimensional Nanomaterial-Based Polymer Nanocomposites: Processing Methods, Properties, and ApplicationsSiti Nur Fatin Zuikafly, Hafizal Yahaya, Mohd Haniff Ibrahim and Fauzan Ahmad
7.1 Introduction
7.2 Synthesis and Processing Methods of 2D Nanomaterial-Based Polymer Composites
7.2.1 In Situ Polymerization
7.2.2 Melt-Mixing/Blending
7.2.3 Solution Blending
7.3 Properties of 2D Nanomaterial-Based Polymer Nanocomposites
7.3.1 Mechanical Properties
7.3.2 Electrical Properties
7.3.3 Thermal Properties
7.3.4 Optical Properties
7.3.5 Magnetic Properties
7.3.6 Biological Properties
7.4 Applications of 2D Nanomaterial-Based Polymer Nanocomposites
7.4.1 2D Nanomaterial-Based Polymer Nanocomposites as Flame-Retardant Materials
7.4.2 2D Nanomaterial-Based Polymer Nanocomposites in Energy Storage
7.4.3 2D Nanomaterial-Based Polymer Nanocomposites in Water Treatment
7.4.4 2D Nanomaterial-Based Polymer Nanocomposites in Optoelectronics
7.4.5 2D Nanomaterial-Based Polymer Nanocomposites for Dielectric Applications
7.4.6 2D Nanomaterial-Based Polymer Nanocomposites in Electromagnetic Interference (EMI) Shielding
7.4.7 2D Nanomaterial-Based Polymer Nanocomposites in the Biomedical Field
7.5 Conclusion and Future Perspectives
References
8. Structural, Morphological, and Electrical Properties of Two-Dimensional Nanomaterial-Based Polymer NanocompositesSabina Yeasmin and Debajyoti Mahanta
8.1 Introduction
8.2 Polymer Nanocomposites
8.3 Two-Dimensional Nanomaterials
8.4 Two-Dimensional Nanomaterial-Based Polymer Nanocomposites
8.4.1 Properties
8.4.1.1 Structural Properties
8.4.1.2 Morphological Properties
8.4.1.3 Electrical Properties
8.4.2 Recent Advances
8.5 Conclusion
References
9. Thermal, Mechanical, and Viscoelastic Properties of Two-Dimensional Nanomaterial-Based Polymer NanocompositesKhadijeh Hooshyari, Mohammad Bagher Karimi, Parvaneh Kakavand, Mahshid Mohammadifar, Shahrzad Rahmani, Mahdi Tohidian and Seifollah Jamalpour
9.1 Introduction
9.2 Thermal Properties of Two-Dimensional Nanomaterial-Based Polymer Nanocomposites
9.2.1 Transition Temperature
9.2.1.1 Graphene-Based Polymer Composites
9.2.1.2 Graphene Oxide-Based Polymer Composites
9.2.2 Thermal Conductivity
9.2.2.1 Graphene-Based Polymer Composites
9.2.2.2 Graphene Oxide-Based Polymers
9.2.2.3 TC of rGO/Polymer Composites
9.2.2.4 Hexagonal-Boron Nitride (h-BN)/Polymer Composites
9.3 Mechanical Properties of Two-Dimensional Nanomaterial-Based Polymer Nanocomposites
9.3.1 Mechanical Properties of 2D Nanomaterial-Based Nanocomposites
9.3.2 Mechanical Properties of Pristine 2D Nanomaterials
9.3.3 Mechanical Properties of 2D Nanomaterials/Polymer Nanocomposites
9.3.3.1 Effect of Defects
9.3.3.2 Effect of 2D Nanomaterials’ Aspect Ratio
9.3.3.3 Effect of 2D Nanomaterial Exfoliation Level
9.3.3.4 Effect of the Interface Layer
9.4 Viscoelastic Properties of Two-Dimensional Nanomaterial-Based Polymer Nanocomposites
9.5 Conclusion and Outlook
References
Part 4: Applications of Two Dimensional Nanomaterials-Based Polymer Nanocomposites
10. Two-Dimensional Nanomaterial-Based Polymer Nanocomposites for Supercapacitor ApplicationsAkhila Raman, Asok Aparna, Aathira U., A.S. Sethulekshmi and Appukuttan Saritha
10.1 Introduction
10.2 Synthesis of Two-Dimensional Nanomaterials/Polymer Nanocomposites
10.3 Different Types of 2D Nanomaterial-Based Polymer Nanocomposites
10.3.1 Clay/Polymer Nanocomposites
10.3.2 Graphene and Its Derivatives/Polymer Nanocomposites
10.3.3 Transition Metal Dichalcogenides (TMDs)/Polymer Nanocomposites
10.3.4 Boron Nitride/Polymer Nanocomposites
10.4 Two-Dimensional Nanomaterial-Based Polymer Nanocomposites for Supercapacitor Applications
10.4.1 Graphene/Polymer Nanocomposites
10.4.2 Boron Nitride/Polymer Nanocomposites
10.4.3 Transition Metal Dichalcogenide/Polymer Nanocomposites
10.4.4 Metal–Organic Framework (MOF)/Polymer Nanocomposites
10.4.5 MXene-Based Polymer Nanocomposites
10.4.6 Other Two-Dimensional Nanomaterial-Based Polymer Nanocomposites
10.5 Conclusion and Future Perspectives
10.6 Acknowledgment
References
11. Two-Dimensional Nanomaterial‑Based Polymer Nanocomposites for Rechargeable Lithium-Ion BatteriesJeevan Jyoti, Manjit Sandhu, Bhanu Pratap Singh and S.K. Tripathi
11.1 Introduction
11.2 Basic Concept of LIBs
11.2.1 Cathode Electrode
11.2.1.1 Layered Transition Metal Oxides (TMOs)
11.2.1.2 Manganese-Based Spinel (LiMn2O4)
11.2.1.3 Polyanionic Materials
11.2.1.4 Organic Electrode Materials
11.2.2 Anode Electrode Materials
11.2.2.1 Lithium Alloys
11.2.2.2 Transition Metal Oxides (TMOs)
11.2.2.3 Electrolytes
11.3 Cell Voltage
11.4 Polymer-Based Flexible Electrodes
11.4.1 Conducting Polymer Used as Flexible Electrodes
11.4.1.1 Merits and Demerits of Conducting Polymers
11.4.2 Non-Conducting Polymer (NCP)-Based Flexible Electrodes
11.4.2.1 Merits and Demerits of Non-Conducting Polymers
11.5 Factors Affecting the Performance of Flexible Electrodes
11.5.1 Morphology
11.5.2 Physical Factors
11.5.3 Operational Factors
11.5.4 Chemical and Stability Factors
11.5.5 Thermal Effect
11.6 Two-Dimensional (2D) Materials
11.7 Two-Dimensional (2D) Materials for LIBs
11.7.1 Graphene
11.7.2 Transition Metal Oxides (TMO)
11.7.3 Transition Metal Dichalcogenides
11.7.4 MXene
11.7.5 Covalent Organic Frameworks (COFs)
11.7.6 Hexagonal Boron Nitride (hBN)
11.7.7 Metal–Organic Framework (MOFs)
11.7.8 Black Phosphorus (BP)
11.8 Conclusions
References
12. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Solar Energy ApplicationsMahmoud H. Abu Elella, Laila Saad and Moshera Samy
12.1 Introduction
12.2 2D Nanomaterials-Based PNCs
12.2.1 Graphene-Based PNCs
12.2.2 Graphene Oxide-Based PNCs
12.2.3 Graphene Nanoplatelets-Based PNCs
12.2.4 Graphene Nanosheets-Based PNCs
12.2.5 MXene-Based PNCs
12.2.6 COFs-Based PNCs
12.2.7 Black Phosphorus-Based PNCs
12.2.8 Layered Double Hydroxides-Based PNCs
12.2.9 Nanoclays-Based PNCs
12.2.10 2D Transition Metal Oxides (TMO)-Based PNCs
12.2.10.1 Titanium Dioxide (TiO2)-Based PNCs
12.2.10.2 Tin Oxide (SnO2)-Based PNCs
12.2.10.3 Zirconium Dioxide (ZrO2)-Based PNCs
12.2.10.4 Cobalt Oxide (Co3O4)-Based PNCs
12.2.10.5 Zinc Oxide (ZnO)-Based PNCs
12.2.11 2D Transition Metal Dichalcogenides-Based PNCs
12.2.11.1 Molybdenum Sulfide (MoS2)-Based PNCs
12.2.11.2 Ferrous Sulfide (FeS2)-Based PNCs
12.2.11.3 Tungsten Sulfide (WS2)-Based PNCs
12.2.11.4 Cadmium Sulfide (CdS)-Based PNCs
12.2.11.5 Molybdenum Diselenide (MoSe2)-Based PNCs
12.2.11.6 Tungsten Diselenide (WSe2)-Based PNCs
12.2.11.7 Cobalt Selenide (CoSe)-Based PNCs
12.2.12 2D Hexagonal Boron Nitride-Based PNCs
12.2.13 2D Metal Organic Framework-Based PNCs
12.3 Conclusion and Future Perspectives
References
13. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Fuel Cell ApplicationsSeifollah Jamalpour, Amirsaeed Shamsabadi, Kosar Arab, Mahdi Tohidian, Yousef Tamsilian, Khadijeh Hooshyari and Shahrzad Rahmani
13.1 Introduction to Fuel Cell Technology
13.2 Polymer Electrolyte Membrane Fuel Cell (PEMFC)
13.2.1 Principles of PEM, Their Structure, and Operation
13.2.2 Nafion PEMs
13.2.3 Alternative PEMs to Nafion
13.3 Nanocomposite PEMs Based on 2D Nanofillers
13.3.1 Graphene-Based Nanocomposite PEMs
13.3.2 Clay-Based Nanocomposite PEMs
13.3.3 Nanocomposite PEMs Based on Other Layered Nanofillers
13.3.4 Alignment of 2D Nanomaterial for Fabricating Nanocomposite PEM
13.3.5 Modification of 2D Nanomaterials for Fabricating Nanocomposite PEMs
13.4 Membrane Preparation Techniques
13.4.1 Ex-Situ Methods
13.4.1.1 Blending
13.4.1.2 Electrospinning Method
13.4.1.3 Layer-by-Layer (LBL) Method
13.4.2 In-Situ Methods
13.4.2.1 Infiltration Method
13.4.2.2 Sol-Gel Method
13.5 Characterization Techniques
13.6 Conclusions and Outlooks
References
14. High-k Dielectrics Based on Two-Dimensional Nanomaterials-Filled Polymer NanocompositesMohamed Nawas Vengoli, Lishin T., Aparna Thankappan and Sabu Thomas
14.1 Introduction
14.2 2D Dielectric Nanomaterials
14.2.1 Graphene
14.2.1.1 Graphene Oxide (GO)
14.2.1.2 Graphene Nanosheets (GNs)
14.2.2 Hexagonal Boron Nitride (h-BN)
14.2.3 Layered Silicate (Clay)
14.2.4 Layered Double Hydroxides (LDHs)
14.2.5 Transition Metal Oxides (TMO)
14.2.6 Metal Organic Frameworks (MOFs)
14.2.7 Transition Metal Dichalcogenides (TMDs)
14.2.8 Black Phosphorous (BP)
14.2.9 Silicene
14.2.10 MXenes
14.3 Factors Affecting the Properties of High-k Polymer Nanocomposites with 2D Fillers
14.3.1 Superiority of High-Aspect-Ratio Filler
14.3.2 Role of Surface Functionalization of 2D Nanofiller
14.3.3 Effect of Microstructure of 2D Filler
14.3.4 Synergistic Effect of 2D Filler and Other Filler
14.4 Application of High-k Dielectric Polymer Nanocomposites
14.5 Dielectric Performance of Various 2D Nanomaterials-Based Polymer Nanocomposites
References
15. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Catalytic and Photocatalytic ApplicationsDilip Kumar Kar, Smrutirekha Mishra, Priti Sunder Mohanty and Satyabrata Si
15.1 Introduction
15.2 Characteristics of 2D Nanomaterials
15.3 Synthesis and Fabrication of 2D Materials-Based Polymer Nanocomposites
15.4 Catalysis and/or Photocatalysis of 2D Materials-Based Polymer Nanocomposites
15.4.1 Catalysis with Semiconductors
15.4.2 Catalysis with Graphene and its Derivatives
15.4.3 Catalysis with MXene
15.4.4 Catalysis with LDH
15.4.5 Catalysis with TMD
15.4.6 Catalysis with Clay Minerals
15.4.7 Catalysis with h-BN
15.4.8 Catalysis with MOFs
15.4.9 Catalysis with TMOs
15.5 Conclusion and Future Prospective
References
16. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Biomedical ApplicationsSwapnita Patra, Krishna Manjari Sahu, Shuvendu Shuvankar Purohit and Sarat K. Swain
16.1 Introduction
16.2 2D Nanomaterials-Based PNCs
16.2.1 Graphene-Based PNCs
16.2.2 LDH-Based PNCs
16.2.3 Clay-Based PNCs
16.2.4 h-BN Nanosheets-Based PNCs
16.2.5 MXenes-Based PNCs
16.2.6 MOFs-Based PNCs
16.2.7 g-C3N4-Based PNCs
16.2.8 TMD-Based PNCs
16.2.9 BP-Based PNCs
16.2.10 TMO Based PNCs
16.2.11 COF-Based PNCs
16.3 Biomedical Applications of 2D Nanomaterials-Based PNCs
16.3.1 Application in Drug Delivery
16.3.2 Application in Wound Healing
16.3.3 Application in Tissue Engineering
16.3.4 Application in Gene Therapy
16.3.5 Application in Biosensing
16.4 Conclusions
Acknowledgements
References
17. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Tissue Engineering ApplicationsSaleheh Shahmoradi, Mojdeh Mirshafiei, Iman Zare, Morvarid Koohkhezri,
Hanna Madadi Gholipour, Fatemeh Yazdian and Ebrahim Mostafavi
Abbreviations
17.1 Introduction
17.2 2D Nanomaterials-Based Polymer Nanocomposites for Tissue Engineering Applications
17.2.1 Graphene/Polymer Nanocomposites
17.2.2 Graphene Oxide/Polymer Nanocomposites
17.2.3 Graphene/Polymer Nanocomposites
17.2.4 Hexagonal Boron Nitride/Polymer Nanocomposites
17.2.5 Nanoclay/Polymer Nanocomposites
17.2.6 Layered Double Hydroxides/Polymer Nanocomposites
17.2.7 Transition Metal Oxide/Polymer Nanocomposite
17.2.8 Metal–Organic Frameworks/Polymer Nanocomposites
17.2.9 Covalent Organic Frameworks/Polymer Nanocomposites
17.2.10 Transition Metal Dichalcogenides/Polymer Nanocomposite
17.2.11 Black Phosphorous/Polymer Nanocomposite
17.2.12 MXene/Polymer Nanocomposite
17.3 Conclusions and Future Perspectives
References
18. Antibacterial and Drug Delivery Applications of Two-Dimensional Nanomaterials-Based Polymer NanocompositesKrishna Manjari Sahu, Shuvendu Shuvankar Purohit and Sarat K. Swain
18.1 Introduction
18.2 Graphene-Based Polymer Nanocomposite
18.3 Graphene Nanosheet-Based Polymer Nanocomposite
18.4 MXene-Based Polymer Nanocomposite
18.5 Nanoclay-Based Polymer Nanocomposite
18.6 LDH-Based Polymer Nanocomposite
18.7 Black Phosphorus-Based Polymer Nanocomposite
18.8 Boron Nitride-Based Polymer Nanocomposite
18.9 g-C3N4-Based Polymer Nanocomposite
18.10 TMD-Based Polymer Nanocomposite
18.11 MOF-Based Polymer Nanocomposite
18.12 COF-Based Polymer Nanocomposite
18.13 Concluding Remarks
Acknowledgement
References
19. Two-Dimensional Nanomaterials-Based Polymer Nanocomposite
Membranes for Liquid and Gas SeparationDiksha Yadav , Sachin Karki, Moucham Borpatra Gohain and Pravin G. Ingole
19.1 Introduction
19.2 2D Nanomaterials
19.3 Classification of 2D Nanomaterial
19.4 Development of Polymer Nanocomposite Membranes
19.4.1 Interfacial Polymerization
19.4.2 Blending
19.4.3 In-Situ Growth
19.4.4 Layer by Layer
19.5 Applications of Polymer Nanocomposite Membranes
19.5.1 Liquid Separation
19.5.1.1 Water Desalination
19.5.1.2 Biomedical Applications
19.5.1.3 Ion Sieving
19.5.1.4 Organic Solvent Nanofiltration
19.5.2 Gas Separation
19.6 Future Directions
19.7 Conclusion
Acknowledgement
References
20. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Gas
and Volatile Organic Compound SensingRaghav G. R., Sreejesh Moolayadukkam, Neethu Rose Thomas and Gibin George
20.1 Introduction
20.2 Preparation of Polymer Composite Films for Sensing
20.3 Principles of Gas Sensing
20.4 Evaluation of Gas Sensing Devices
20.5 Development of Polymer-Based VOCs/Gas Sensors
20.5.1 Metal Oxide Polymer Multilayer Nanocomposites
20.5.2 Metal-Organic Framework-Reinforced Polymer Composites
20.5.3 Metal-Reinforced Polymer Composites
20.5.4 Graphene-Reinforced Polymer Composites
20.5.5 h-Boron Nitride-Reinforced Polymer Composites
20.5.6 TMD-Reinforced Polymer Composites
20.5.7 MXene-Reinforced Polymer Composites
20.5.8 Hybrid Nanocomposites
20.5.9 Silicate-Reinforced Polymer Nanocomposites
20.6 Conclusions
References
21. Two-Dimensional Nanomaterials-Based Polymer Nanocomposites for Protective Anticorrosive CoatingsHoura Pezeshk-Fallah, Seyedeh Zahra Haeri, Mohammad Ramezanzadeh and Bahram Ramezanzadeh
21.1 Introduction
21.2 Polymeric Coatings: Concepts and Formulation
21.2.1 Definition
21.2.2 History of Polymer Coatings
21.2.3 Polymeric Coatings: Preparation and Application
21.2.4 Polymeric Coatings: Advantages and Weaknesses
21.2.5 Polymeric Coatings Properties Improvement by Incorporation of Conventional Filler
21.2.6 Nanomaterials-Based Polymeric Nanocomposites
21.3 Two-Dimensional Nanomaterials
21.3.1 Types of 2D Nanomaterials
21.3.1.1 Layered 2D Nanomaterials
21.3.1.2 None-Layered Types of 2D Nanomaterials
21.3.1.3 Binary Hybrid Nanomaterials
21.3.2 Characteristics of 2D Nanomaterials
21.3.3 Synthesis of 2D Nanomaterials
21.3.4 Anti-Corrosive Properties
21.3.4.1 Graphene-Based Nanomaterials
21.3.4.2 Transition Metal Dichalcogenides (TMDs)
21.3.4.3 Graphitic Carbon Nitride (g-C3N4)
21.3.4.4 Hexagonal Boron Nitride (h-BN)
21.3.4.5 Zirconium Phosphate (ZrP)
21.3.4.6 Hydroxyapatite (HA)
21.3.4.7 Layered Double Hydroxides (LDHs)
21.3.4.8 Metal Oxides
21.3.4.9 Covalent Organic Frameworks (COFs)
21.3.4.10 MXenes
21.3.4.11 Binary Hybrid Nanomaterials
21.3.5 UV Shielding Properties
21.3.5.1 Graphene-Based Nanomaterials
21.3.5.2 Hexagonal Boron Nitride (h-BN)
21.3.5.3 Hydroxyapatite (HA)
21.3.5.4 Layered Double Hydroxides (LDHs)
21.3.5.5 Metal Oxides
21.3.5.6 MXene
21.3.5.7 Binary Hybrid Nanomaterials
21.4 Industrial Applications
21.5 Conclusion and Future Trends
References
Index Back to Top